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ABSTRACT

One of the proposed damping mechanisms of coronal (transverse) loop oscillations in the kink mode is res-
onant absorption as a result of the Alfvén speed variation at the outer boundary of coronal loops. Analytical
expressions for the period and damping time exist for loop models with thin nonuniform boundaries. They
predict a linear dependency of the ratio of the damping time to the period on the thickness of the nonuniform
boundary layer. Ruderman and Roberts used a sinusoidal variation of the density in the nonuniform
boundary layer and obtained the corresponding analytical expression for the damping time. Here wemeasure
the thickness of the nonuniform layer in oscillating loops for 11 events, by forward-fitting of the cross-
sectional density profile ne(r) and line-of-sight integration to the cross-sectional fluxes F(r) observed with
TRACE 171 Å. This way we model the internal (ni) and external electron density (ne) of the coronal plasma in
oscillating loops. This allows us to test the theoretically predicted damping rates for thin boundaries as a
function of the density ratio � ¼ ne=ni. Since the observations show that the loops have nonuniform density
profiles, we also use numerical results for damping rates to determine the value of � for the loops. We find
that the density ratio predicted by the damping time, �LEDA ¼ 0:53� 0:12, is a factor of�1.2–3.5 higher than
the density ratio estimated from the background fluxes, � ¼ 0:30� 0:16. The lower densities modeled from
the background fluxes are likely to be a consequence of the neglected hotter plasma that is not detected with
the TRACE 171 Å filter. Taking these corrections into account, resonant absorption predicts damping times
of kink-mode oscillations that are commensurable with the observed ones and provides a new diagnostic of
the density contrast of oscillating loops.

Subject headings: Sun: corona — Sun: magnetic fields — Sun: UV radiation — waves

1. INTRODUCTION

Oscillations of coronal loops have now been detected
virtually in all wavelengths (for a recent review see, e.g.,
Aschwanden 2003). Most of these oscillations have been
interpreted in terms of standing (eigenmodes) and propagat-
ing MHD waves (for a recent theoretical review see, e.g.,
Roberts & Nakariakov 2003). The MHD eigenmodes
include fast sausage and kink modes that produce trans-
verse oscillations with Alfvénic speed, slow magnetoacous-
tic modes that produce longitudinal oscillations with sound
speed, and torsional modes that produce sheared azimuthal
oscillations. Obviously, observations of such oscillating
systems provide direct measurements of Alfvén speeds and
sound speeds, which in combination with electron density
measurements can be used to infer the magnetic field in the
corona, which is very difficult to determine by other means.
This important new diagnostic has been dubbed ‘‘ coronal
seismology ’’ (Roberts, Edwin, & Benz 1984; Roberts &
Nakariakov 2003).

Most of the coronal loops that exhibit oscillations have
been found to be strongly damped, typically having an
exponential damping time tD of a few oscillation periods P
(Nakariakov et al. 1999; Schrijver, Aschwanden, & Title

2002; Aschwanden et al. 2002). Theoretical models of
damping mechanisms include (1) nonideal effects such as
viscous and ohmic damping, optically thin radiation, and
thermal conduction; (2) wave leakage across the sides of the
loop boundaries; (3) wave leakage at the chromospheric
footpoints; (4) phase mixing in inhomogeneous loop
regions; and (5) resonant damping at the sides of loop boun-
daries. The first three effects are believed to be weak for fast
kink-mode oscillations, while the latter two are considered
as most important (Goossens 1991; Poedts 2002; Ruderman
& Roberts 2002; Ofman & Aschwanden 2002; Goossens,
Andries, & Aschwanden 2002; Erdélyi 2003). First observ-
ational tests with TRACE data revealed that the scaling law
of the damping time as a function of other physical parame-
ters (loop length L and period P) favors the phase mixing
mechanism (Ofman & Aschwanden 2002), but the mecha-
nism of resonant absorption can explain the observed
damping times equally well if the inhomogeneity length
scale is a fraction of �15%–50% of the loop radius
(Goossens et al. 2002). More accurate tests to decide
between these two damping mechanisms require the knowl-
edge of the inhomogeneity length scale l and the density
ratio ne/ni between the external and internal electron density
of oscillating loops. The knowledge of the density ratio ne/ni
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is also required to calculate a coronal magnetic field
strength B from a loop with oscillation period P and length
L, which is a fundamental tool of coronal seismology
(Nakariakov & Ofman 2001). In this paper we measure for
the first time these additionally required parameters in 11
kink-mode oscillations events, for which the damping times
have been reliably determined earlier (Aschwanden et al.
2002). This allows for a more rigorous quantitative test of
the damping mechanisms, with no free parameters for the
theoretical model of resonant absorption. We find that the
mechanism of resonant absorption is commensurable with
the observed damping times. The data analysis and discus-
sion of observational parameters are discussed in x 2, while
conclusions are summarized in x 3.

2. DATA ANALYSIS

We analyze 11 loop oscillation events from the study of
Aschwanden et al. (2002) for which a reliable damping time
tD has been determined (see, e.g., event 1 in Fig. 1). The
same data set of these 11 events is also studied in Ofman &
Aschwanden (2002) and Goossens et al. (2002). The date
and times of the observations, the heliographic coordinates,
the inclination angles of the loop planes, the loop curvature

radii, the oscillation periods, and the damping times are
summarized in Table 1, extracted from Tables 1 and 2 in
Aschwanden et al. (2002), as well as one damping time from
Nakariakov et al. (1999).

2.1. Parameterization of Loop Skin Depth

Damping of oscillations and waves by resonant absorp-
tion has been studied as a mechanism for coronal heating.
Most studies in this context are concerned with driven
waves. The interest for the present paper is in the eigen-
modes damped by resonant absorption. Hollweg & Yang
(1988) derived an analytical expression for the decay time in
planar geometry for an equilibrium model with a thin non-
uniform boundary layer. They translated their Cartesian
result to cylindrical flux tubes and were the first to point out
that kink-mode oscillations undergo fast damping. In our
view ‘‘Hollweg decay ’’ is a good name to refer to this fast
damping due to resonant absorption. Goossens et al. (1992)
derived analytical expressions for the damping rate for one-
dimensional cylindrical flux tubes with thin nonuniform
boundaries (TB) under rather general conditions of the
equilibriummagnetic field and stationary equilibrium veloc-
ity field. Of particular relevance for the present study is their
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Fig. 1.—Oscillation event 1a on 1998 July 14, 12:45 UT, analyzed in Aschwanden et al. (2002) and Nakariakov et al. (1999). A difference image is shown,
where the transverse oscillation amplitude is analyzed in an area marked with a white box that is oriented perpendicular to the loop (top left-hand panel). The
three-dimensional geometry of the loop is approximated with a coplanar circle (thin line in bottom left-hand panel). The oscillation amplitude is decomposed
into a nonoscillatory trend (top right-hand panel) and into an oscillatory damped function (bottom right-hand panel ). For further details see Aschwanden et al.
(2002).
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equation (77) for a static loop with a straight field. It was
derived under the assumption that the loop is long so that
the tube is thin (TT). Ruderman & Roberts (2002) reconsid-
ered the problem as an initial value problem. They arrived
at an analytical expression for the damping rate that is a
special case of the corresponding equation of Goossens
et al. (1992; see their eq. [56]). Ruderman & Roberts (2002)
then specialized to a sinusoidal variation of density in the
thin nonuniform layer (their eq. [71]) and obtained the cor-
responding decay time (their eq. [73]). Their density profile
n(r) across a loop cross section is parameterized by

nðrÞ ¼

ni for r < ða� lÞ ;

ni

�
ð1þ �Þ

2
� ð1� �Þ

2

� sin
�

2

ð2rþ l � 2aÞ
l

�
for ða� lÞ < r < a ;

ne for r > a ;

8>>>>>>><
>>>>>>>:

ð1Þ

where � ¼ ne=ni is the density ratio of the external plasma ne
to the internal plasma density ni of the loop. The depth l of
the loop surface region might be called the ‘‘ skin depth ’’
because it characterizes the depth of the outer envelope
layer over which the density varies. Thus, a is the outer loop
radius, b ¼ a� l the inner loop radius, and R the mean
radius, which defines also the half-width (wloop/2) for the
loop,

R ¼ wloop

2
¼ aþ b

2

� �
¼ a� l

2
: ð2Þ

Hence, the density outside of the loop is nðr > aÞ ¼ ne, the
skin region is bound by b < r < a, and the density inside this
skin depth is nðr < bÞ ¼ ni. An example of such a density
profile is shown in Figure 2 (bottom panel), for an inner
radius b ¼ 0:4Mm and an outer radius a ¼ 3:5Mm.

With this parameterization, Ruderman & Roberts (2002)
derive a ratio of the exponential damping time tD to the
oscillation period P (their eq. [73]), where we can replace

TABLE 1

Times, Locations, Loop Geometries, Oscillation Periods, and Damping Times of 11 Oscillation Events Analyzed

in Aschwanden et al. (2002)

Number

Date and Time of

Observation

Heliographic

Longitude

l0 � l�
(deg)

Heliographic

Latitude

b0 � b�
(deg)

Loop

Inclination

#

(deg)

Loop

Curvature

Rcurv

(Mm)

Oscillation

Period

P

(s)

Damping

Time

tD
(s)

1a........................ 1998 Jul 14 1259:57 �15.6 �27.6 7.0 47.0 261 870a

1b........................ 1998 Jul 14 1257:38 �15.5 �26.0 19.0 24.0 265 300

1d........................ 1998 Jul 14 1257:36 �19.5 �24.5 �35.0 55.0 316 500

1f ........................ 1998 Jul 14 1256:32 �19.6 �24.5 �44.0 57.0 277 400

1g........................ 1998 Jul 14 1302:26 �19.2 �22.7 47.0 45.0 272 849

3a........................ 1998Nov 23 0635:57 82.3 �27.7 �12.0 99.0 522 1200

4a........................ 1999 Jul 04 0833:17 26.0 �27.3 �14.0 74.0 435 600

5c ........................ 1999 Oct 25 0628:56 �22.9 �21.3 2.0 53.0 143 200

10a...................... 2001Mar 21 0232:44 72.6 �3.8 20.0 77.0 423 800

16a...................... 2001May 15 0257:00 22.7 �18.3 39.0 68.0 185 200

17a...................... 2001 Jun 15 0632:29 �48.7 �28.0 41.0 33.0 396 400

a This value of tD ¼ 870 s was measured in Nakariakov et al. 1999 and is also used in the study of Ofman & Aschwanden 2002. An
alternative value of tD ¼ 1200 s was determined in Aschwanden et al. 2002. The difference reflects a typical uncertainty in the determination of
the damping time tD.
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Fig. 2.—Radial flux profile F(r) for event 1a (top panel; see Fig. 1), as a
function of the cross-sectional radius r perpendicular to the loop and
averaged along the loop within the white box shown in the top left-hand
panel of Fig. 1. A linear background to the oscillating loop is evaluated
(dashed line in top panel) and subtracted (second panel ). A trapezoidal
density function with sinusoidal boundaries (eq. [1]) with outer radius a and
inner radius a� l is shown (third panel ) and fitted to the background-
subtracted flux cross section (second panel) with proper line-of-sight
integration across the two-dimensional density distribution (bottom panel).
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R � a in the thin-boundary approximation,�
tD
P

�
thin

¼ 2

�

�
a

l

�
ð1þ �Þ
ð1� �Þ �

2

�

R

l

� �
ð1þ �Þ
ð1� �Þ : ð3Þ

Ruderman & Roberts (2002) obtained the above analytical
expression (and also their more general expression, eq. [56])
under the assumption that the nonuniform layer is thin,
meaning l=a5 1. In the present paper we use the Ruderman
& Roberts (2002) formula to estimate the ratio � for loops
with thick nonuniform layers. A generalization of this result
for thick boundary layers thus involves two corrections, one
for the replacement of the outer loop radius a with the mean
loop radius R ¼ a� l=2, and a second one that quantifies a
correction factor qTB between the thick-boundary and thin-
boundary treatment using the mean loop radius R. Thus,
the damping formula may be written in terms of R and the
correction factor qTB,�

tD
P

�
thick

¼ qTB

�
tD
P

�
thin

¼ qTB
2

�

R

l

� �
ð1þ �Þ
ð1� �Þ ; ð4Þ

where the correction factor qTB depends on the boundary
thickness ratio (l/R), as well as on the density ratio �, and
has been calculated numerically in T. Van Doorsselaere et
al. (2003, in preparation). For instance, for a density ratio
of � ¼ 1

3, the correction factor qTB varies in the range of
[0.75, 1.18]. In the fully nonuniform limit l=R ¼ 2, the cor-
rection value is qTBðl=R ¼ 2; � ¼ 1

3 Þ � 0:75. We use the
numerically calculated values qTB in Table 2 to predict the
external plasma density.

In a previous study we measured the oscillation periods P
and damping times tD of 11 events (Aschwanden et al.
2002). Here we attempt to measure the loop geometry
parameters a and b ¼ a� l and the density ratio � to test
this theoretical model (eq. [4]) of damping by resonant
absorption. The ‘‘ density contrast ’’ of the oscillating loop
is just the inverse ratio ��1 ¼ ni=ne, which is larger than
unity for every detectable loop.

2.2. Loop Density Profiles

In order to measure cross-sectional density profiles n(r) of
coronal loops observed in optically thin EUV or soft X-ray
emission, at least four effects that need to be taken into
account play a role: the subtraction of the background flux
from the plasma in front and behind the oscillating loop

along the line of sight (Fig. 2), the line-of-sight integration
of the emission measure (Fig. 3), the spatial smearing due to
the transverse motion of an oscillating loop during an
exposure time (Fig. 4), and the point-spread function of the
instrument (Fig. 5).

We start with the background subtraction, which is sim-
ply done by inspecting cross-sectional density profiles, aver-
aged over some loop segment along the loop, selecting the
lowest flux values on both sides of the oscillating loop, and
interpolating a linear function between both sides (Fig. 2,
top panel). Thus, the total EUV flux per pixel across a loop
cross section is defined by

Fðr; tÞ ¼ Fbackðr; tÞ þ Floopðr; tÞ ; ð5Þ

which yields a time-averaged background flux Fback (per
pixel),

Fback ¼ Fbackðr; tÞh i ; rleftðtÞ < r < rrightðtÞ ; ð6Þ

and a time-averaged loop flux Floop at the central axis of the

TABLE 2

Best-Fit Parameters of Loop Cross Section Fits to the Same 11 Events Specified in Table 1

Number

Loop Flux

Fsubtr

(DN s�1)

Background Flux

Fback

(DN s�1)

LoopRadius

a

(Mm)

Skin Depth

l

(Mm)

LoopDensity

ðn2i � n2eÞ1=2
(108 cm�3)

MinimumRatio

(tD/P)min

Observed Ratio

(tD/P)obs

1a........................ 9.9� 1.6 23.2� 1.8 3.5� 0.4 3.3� 0.5 15.6� 1.3 0.35� 0.53 3.33� 1.11

1b........................ 20.9� 5.0 28.0� 8.1 3.4� 0.5 2.9� 0.5 22.4� 2.7 0.41� 0.26 1.13� 0.38

1d........................ 4.0� 3.1 18.6� 7.5 2.6� 0.9 2.1� 1.1 10.8� 4.3 0.48� 0.59 1.58� 0.53

1f ........................ 0.5� 0.3 7.3� 3.0 2.0� 0.5 1.6� 0.6 4.5� 1.6 0.49� 0.42 1.44� 0.48

1g........................ 7.0� 2.8 43.2� 3.7 3.4� 0.7 2.9� 1.0 12.7� 2.8 0.44� 0.55 3.12� 1.04

3a........................ 12.7� 5.3 34.7� 1.3 12.4� 4.1 10.8� 4.3 9.1� 2.0 0.41� 0.40 2.30� 0.77

4a........................ 12.6� 2.2 54.4� 12.6 2.8� 0.5 2.7� 0.5 19.8� 1.7 0.34� 0.38 1.38� 0.46

5c ........................ 13.9� 2.9 44.8� 6.3 2.5� 0.2 2.3� 0.2 21.9� 2.3 0.37� 0.26 1.40� 0.47

10a ...................... 25.9� 8.4 40.5� 6.5 4.6� 0.5 3.6� 0.8 20.7� 3.4 0.48� 0.36 1.89� 0.63

16a ...................... 2.5� 0.5 6.3� 1.5 10.2� 2.9 9.0� 3.3 4.4� 0.4 0.40� 0.59 1.08� 0.36

17a ...................... 1.2� 0.7 53.6� 2.0 1.6� 0.6 1.2� 0.7 7.1� 2.9 0.57� 0.40 1.01� 0.34

a-l a

 LO
S

Fig. 3.—Geometry of line-of-sight (LOS) integration. The two-
dimensional density distribution of a loop cross section is contoured in gray
scale in the bottom left part, cross sections along the line of sight are
projected to the right side, and the radial cross section in transverse
direction (in the plane of the sky) is projected to the top side.
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loop,

Floop ¼ max Floopðr; tÞ
� �

; rleftðtÞ < r < rrightðtÞ ; ð7Þ

where the loop boundaries [rleft(t), rright(t)] vary as a function
of time t depending on the motion of the oscillating loop
(see Fig. 6, left-hand panel). The loop flux is related to the
electron density n(z) along the line of sight z by the emission
measure EM at pixel position (x, y),

dEMðx; y;TÞ
dT

¼
Z

n2ðx; y; z;TÞdz : ð8Þ

The observed flux Floopðx; yÞ in a given filter specified by a
temperature-dependent instrumental response function
R(T) is obtained by integrating the emission measure
EM(T) with the response function R(T) over all
temperatures T,

Floopðx; yÞ ¼
Z

dEMðx; y;TÞ
dT

RðTÞdT : ð9Þ

For an isothermal loop segment that is near-perpendicular
to the line of sight, we can obtain the radial flux profile F(r)
by integrating the density profile n(r) specified in equation

(1) along the line of sight z (Fig. 2, bottom panel, and Fig. 3),

FloopðrÞ ¼ RðTÞ
Z

n2 r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p� 	
dz : ð10Þ

The circular cross section essentially causes a convolution
of the density profile n(r) with a column depth Dz that has a
circular dependence Dz / ½ða2 � r2Þ�1=2, so that the flux pro-
file F(r) looks more Gaussian-like (Fig. 2, second panel) than
the trapezoidal shape of the density function (Fig. 2, third
panel). We fit the (normalized) theoretical loop profile (eq.
[1]) to the observed flux profiles Floop(r) by optimization of
the parameters a and l, using a Powell minimization method
(Press et al. 1986).

The measured total flux at the center (r ¼ 0) of the loop is

Ftotal ¼ n2i wloop þ n2e zback � wloop


 �� �
RðTÞ ; ð11Þ

with ni being the internal loop density, wloop the mean loop
width (eq. [2]), and ne the external or average background
density extended over a column depth zback. The mean
background flux measured at the sides of the loop is

Fback ¼ ðn2ezbackÞRðTÞ ; ð12Þ

yielding a background-subtracted flux of

Fsubtr ¼ Ftotal � Fback ¼ n2i � n2e

 �

wloop

� �
RðTÞ ; ð13Þ

f(r,t=t1)

f(r,t=t2)

f(r,t=t3)

f(r,t=t4)

f(r,t=t5)

f(r,t=t6)

f(r,t=t7)

<f(r)>

Fig. 4.—Effect of time smearing demonstrated for a near-rectangular
cross section profile Fðt; t ¼ tiÞ, i ¼ 1; . . . ; 7, which in superposition adds
up to amore trapezoidal cross section profile FðrÞh i.
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which then yields the difference of the squared densities.
Thus, we cannot determine the internal loop density ni
directly, but only as a function of the external density ne,

ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DFsubtr

wloopRðTÞ þ n2e

s
: ð14Þ

In the limit of vanishing (background-subtracted) loop flux,
FsubtrC0, the densities inside (ni) and outside of the loop (ne)
become identical. The density profile fitting is performed for
every time step (typically 10–30 images) of the 11 oscillation
events (see, e.g., Fig. 6). The results of the best-fit param-
eters a, l, and ðn2i � n2eÞ1=2, with the mean and standard
deviation from averaging over all (�20–30) time steps, are
given in Table 2.

The data analysis procedure is illustrated in Figures 1–8.
Figure 2 shows a fit of a cross section profile nðr; tiÞ to the
observed flux Floopðr; t ¼ tiÞ at a single time step ti. Figure 6
shows the fits as a function of time ti, i ¼ 1; . . . ; n, and
Figure 7 shows the variation of the measured parameters as

a function of time, Floop(t) and Fback(t) (Fig. 7, top panel),
the oscillation amplitude A(t) (Fig. 7, middle panel), and the
cross section parameters a(t), l(t), and aðtÞ � lðtÞ (Fig. 7,
bottom panel), with the means and standard deviations
indicated. Figure 8 shows a summary plot of the average
cross section fits, for each of the 11 events.

2.3. OscillatoryMotion Smearing

We have to be aware that every TRACE image has been
recorded with a finite exposure time of typically
Dtexp � 5 10 s. Since we are measuring the loop profiles in
perpendicular direction to the loop axis, the oscillatory
motion of the transverse kink mode introduces a smearing
that transforms a rectangular density profile into a trapezoi-
dal profile (Fig. 4), if not corrected. For typical oscillation
speeds of vmax � 10 100 km s�1 (see Table 2 in Aschwanden
et al. 2002) we expect a motion of Dr ¼ vmaxDtexp � 50 1000
km, which corresponds to Dr � 0:1 2:8 TRACE pixels with
a pixel size of 0>5. However, the observed loop radii were
found to be in the range of a � 2000 12; 000 km, hence at
least an order of magnitude larger. For most times the
actual speed is smaller at an arbitrary phase of the sinu-
soidal oscillations, vðtÞ < vmax. We measured the actual
amount of smearing for every fit and found that it amounted
indeed in all cases to a fraction of less than 0.05–0.1 of the
loop width. Therefore, we neglected this effect in the fitting
procedure.

2.4. Point-Spread Function

The instrumental point-spread function contributes to
some broadening and smoothing of observed density pro-
files and thus could affect our inversion of loop density
profiles from observed flux profiles. The point-spread func-
tion of TRACE has been investigated in 171 Å EUV image
fits using a blind iterative deconvolution (BID) procedure
(R. Nightingale 2003, private communication). The shape
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of the TRACE point-spread function was found to have the
shape of a four-sided pyramid with a square-shaped base
rotated by 45� with respect to the CCD raster (Fig. 5). The
point-spread function falls off from a central pixel with
value 1.0 to 0.33–0.36 in the next-neighbor pixels and
almost to 0.0 in the second-next–neighbor pixels, for a pixel
size of 0>5. Thus, the average full width of the pyramid
shape is FWHM ¼ 2� 0>5ð1� 0:345Þ=0:5 ¼ 1>3.

Independently, the TRACE point-spread function has
also been characterized with a BID procedure by Golub
et al. (1999), who also found a slightly elongated shape at a
position angle of 45�, with an FWHM of 3 pixels in one
direction and 2 pixels in the orthogonal direction, yielding
FWHM ¼ 2:5� 0>5 ¼ 1>25, which is consistent with the
former measurement.

Since our measured loop widths (w ¼ 2a� l � 2 . . . 14
Mm; see Table 1) are on average at least an order of magni-
tude larger than the FWHM of the point-spread function
(FWHM � 1:3� 0:725 ¼ 0:94 Mm), we neglect it in fitting
of the density profiles to the flux profiles.

2.5. Predicted External Plasma Density

After we have measured the loop profile parameters a and
l (x 2.1 and Table 2), and using the measurements of the
observed loop oscillation periods P and damping times tD
from the previous study (Aschwanden et al. 2002), we have
only one free parameter left in the damping time expression
(eq. [4]), namely, the external-to-internal density ratio
� ¼ ne=ni of the oscillating loop. Because it is difficult to
measure the ambient plasma density ne of an oscillating
loop, we do not explicitly predict the damping time ratio
tD/P based on uncertain densities ne with equation (12), but
rather do it the other way around by using the theoretical
relation given by equation (12) to predict the ambient den-
sity ne, which can then be compared with observational
measurements.

As equation (4) shows, the shortest damping time ratios
occur for a loop in vacuum, i.e., for � ¼ 0. We list these
minimum ratios �

tD
P

�
min

¼ qTB
2

�

R

l

� �
ð15Þ

in Table 2, which are calculated from the measured values
of R ¼ a� l=2 and l and using the fully nonuniform
approximation qTBðl=R � 2Þ � 1:0 (T. Van Doorsselaere
et al. 2003, in preparation). The resulting values of (tD/P)min

(Table 2; seventh column) reveal that they are all lower than
the observed values (Table 2; rightmost column), as
expected for � > 0. This is a first successful test of the
theoretical model, in the sense that all 11 observed cases are
able to provide a physical solution, namely, a positive value
for the density contrast, � > 0.

In a next step we express the density contrast �D explicitly
as a function of the other variables from equation (4) (where
the subscript in �D indicates here that it is derived from the
damping time tD, instead of the standard definition in terms
of density contrast, � ¼ ne=ni, as defined in eq. [1]),

�D ¼ ðX � 1Þ
ðX þ 1Þ ; X ¼ 1

qTB

�

2

l

R

� ��
tD
P

�
: ð16Þ

We predict now the density contrasts �D based on the
measured ratios of damping times tD to periods P [(tD/P)obs

in Table 2], using the fully nonuniform limit
[qTBðl=R ¼ 2Þ ¼ 1:0]. We find values in the range of
�D � 0:3 0:8 (Table 3, eighth column). Using the numeri-
cally calculated correction factors qTB(l/R) computed with
the LEDA code (T. Van Doorsselaere et al. 2003, in prepa-
ration) for the actual observed values of (l/R), indicated
with �LEDA in Table 3, we see that the approximation
qTB � 1:0 is a very good approximation for fully non-
uniform loops (l=R ¼ 2).

2.6. Measurement of the External Plasma Density

In a next step in our analysis we attempt to estimate the
external plasma density ne around the oscillating loops from
the measured background flux Fback and loop position. The
flux of the background is composed of the emission measure
along the line of sight in front and behind the oscillating
loop. We assume a stratified atmosphere for the spatial and
temporal average of the background flux, with an exponen-
tial density scale height �T corresponding to a mean temper-
ature T. For the plasma detected in the TRACE 171 Å
passband, this mean temperature is T � 1:0 MK. Thus, the
vertical density profile of the detected coronal plasma is

neðhÞ ¼ n0 exp � h

�T

� �
; �T ¼ 47 Mm

T

1:0 MK

� �
:

ð17Þ

We need to calculate the column depth of a hydrostatically
stratified atmosphere along a line of sight as a function of
the distance d from Sun center. We define an ‘‘ equivalent
column depth,’’ zeqðd;TÞ, as a function of the distance
d ¼ r� þ h from Sun center, for a mean coronal
temperature T,

EMbackðd;TÞ ¼
Z 1

�1
n2e h zð Þ;T½ �dz ¼ n20ðTÞzeqðd;TÞ ; ð18Þ

with n0(T) the coronal base density as defined in equation
(6). From equations (6) and (7), the following relation
follows for this equivalent column depth (Table 3, fourth
column):

zeqðd;TÞ ¼
Z z2

z1

exp �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ z2

p
� r�

� 	
�T

2
4

3
5dz for d � r� ;

ð19Þ

with the integration limits z1 ¼ �1 and z2 ¼ þ1 for
above-the-limb locations (d � r�). Inside the disk (d 	 r�),
we have only to change the integration limit z2 to

z2ðdÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� � d2

q
for 0 < d < r� : ð20Þ

The column depths zeqðd;TÞ are shown in Aschwanden &
Acton (2001; Fig. 3 therein) for a height range from disk
center (d ¼ 0) to one solar radius outside the limb
(d ¼ 2r�), for temperatures in the range of T ¼ 1:0 4:0
MK. At disk center (d ¼ 0), the equivalent column depth
matches the emission measure scale height, which is the
half-density scale height (�EM ¼ �T=2). At the limb
(d ¼ r�), there is, in principle, a discontinuous change by a
factor of 2, which, however, is difficult to measure because
of the extremely high instrumental resolution required to
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resolve this jump. Above the limb, the column depth drops
quickly with height.

We can now relate the observed background flux Fback(d ),
measured at a line of sight with distance d from disk center,
to the emission measure EMback(d ), using the instrumental
response functionR(T),

FbackðdÞ ¼ EMbackðdÞRðTÞ ; ð21Þ

and determine the coronal base density n0 (with eqs. [9] and
[10]),

n0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FbackðdÞ

RðTÞzeqðd;TÞ

s
: ð22Þ

To estimate the ambient density around the oscillating
loop in height hosc, we have to use the hydrostatic model of
equation (6),

neðh ¼ hoscÞ ¼ n0 exp � hosc
�T

� �
: ð23Þ

Obviously we need measurements of the center-limb dis-
tance d of the location of the oscillating loop segment, as
well as an estimate of the altitude hosc of the oscillating loop
segment. In the previous study (Aschwanden et al. 2002) we
measured the heliographic longitude difference ðl1 � l0Þ and
latitude difference ðb1 � b0Þ of the midpoint of the loop
baseline to disk center, the inclination angle # of the
loop plane, and the loop curvature radius Rcurv. We list
these parameters of our 11 analyzed loops in Table 1. With
these geometrical parameters we can now determine the
projected distance d of the location of the oscillating loop
segment to disk center (Table 3, third column),

d ¼ ðr� þ hoscÞ sin
�
l1 � l0ð Þ2þ b1 � b0ð Þ2

�
; ð24Þ

and the height hosc of the oscillating loop segment above the
solar surface (Table 3, second column),

hosc ¼ Rcurv cos# : ð25Þ

Inserting these parameters d and hosc into equations (6)–
(12), we obtain now an estimate of the ambient density at
the height of the oscillating loops, neðh ¼ hoscÞ. The so-
evaluated density values ne are given in Table 3 (fifth
column), along with the inferred internal densities ni (eq.
[14]) and density ratios � ¼ ne=ni. These density ratios can
now be compared with the predicted density contrast �D

(eq. [5]) from the observed damping times (Table 3). The
uncertainties of the derived parameters were estimated
according to the error propagation law (see the Appendix).
We find that the density ratio is consistent with the model of
resonant absorption within a factor of �LEDA=� � 1:2 3:5
(Table 3, rightmost column, excluding the lowest and
highest extreme value).

2.7. Temperature Corrections

In our analysis we used the temperature of T ¼ 1:0 MK
that corresponds to the peak of the TRACE 171 Å pass-
band, in which all the analyzed oscillating loops were
detected. This peak temperature is certainly representative
for the background plasma along the line of sight because it
represents an average over many coronal structures that are
detected in a given passband with the highest probability

near the peak temperature of the temperature sensitivity.
Thus, the temperature should not affect any derived param-
eter based on the background plasma, such as the external
plasma density ne.

What about the temperature inside the oscillating loops?
Since the FWHM of the temperature response function in
171 Å is about DT171=T171 ¼ ð1:2� 0:8Þ=1:0 ¼ 0:4, a loop is
detected with a probability of 67% in this temperature
range. The peak response function we used is
R171ðT ¼ 1:0 MKÞ ¼ 1:1� 10�26 DN s�1 cm5 (see, e.g.,
Fig. 12 in Aschwanden et al. 2000). If we approximate the
response function with a Gaussian curve, single-
temperature plasma structures are detected with a probabil-
ity of 24% at a sensitivity that is less than 50% of the peak
response. Hence, statistically, in every fourth loop we may
have overestimated the response function by a factor ofe2,
which is equivalent to an underestimation of the true loop
density by a factor ofd

ffiffiffi
2

p
. Therefore, the resulting density

contrast � ¼ ne=ni could be a factor of 1.4 higher for every
fourth loop. In the statistical average, however, this
temperature correction is not sufficient to explain the
average discrepancy between the density ratios, i.e.,
�LEDA=� � 1:2 3:5.

2.8. Coronal Filling Factors

Another not considered effect is the spatial filling factor,
which affects the plasma determination both external and
internal to the oscillating loops. Generally, if the filling fac-
tor is less than unity, density derivations from the emission
measure (eqs. [8], [11], and [19]) result in an underestimate
of the density. If both the internal plasma and external
plasma are subject to the same filling factor, this effect
would cancel out in the density contrast � ¼ ne=ni and no
correction is needed. However, we think that the oscillating
flux tubes, especially those with small diameters, are more
likely to be solidly filled with plasma than the wide bundles
of flux tubes or the background corona. Examining the
diameters of the oscillating loops, we find large radii ae10
Mm only for two cases (3a and 16a in Table 2), which show
the same discrepancy between � and �D as the other cases
(Table 3), so a correction by a filling factor of loops cannot
improve the consistency between data andmodel either.

On the other side, we can ask whether the filling factor of
the background corona has an effect on our model. With
our stratified coronal model we applied for the temporal
and spatial average (eq. [6]), we inferred a density contrast
of � ¼ 0:30� 0:16. If the background corona is subject to a
filling factor less than unity, the true ambient density
around a loop could be lower or higher. A possible bias
toward a higher value could result in active regions, where
high-density concentrations are more likely around oscillat-
ing loops. If we consider such a filling factor bias and
assume that the ambient density around an oscillating loop
in an active region is actually higher, the density contrast
value � ¼ ne=ni increases. The mismatch is in the average
�LEDA=� � 1:2 3:5, which could be reconciled with corre-
spondingly higher ambient densities around the oscillating
loops. This higher density does not necessarily need to be
plasma with a temperature of T � 0:8 1:2 MK as detected
with TRACE 171 Å; rather, it could be plasma of higher
temperature, say, in the range of T � 1:2 2:0 MK, as many
differential emission measure distributions inferred in active
regions suggest (e.g., Brosius et al. 1996; Aschwanden &
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Acton 2001). Improvements in the determination of the
mean external density ne therefore require the knowledge of
the differential emission measure function, which demands
multifilter data.

2.9. Comparison with PhaseMixingModel

The theory for damping due to resonant absorption for
thin nonuniform layers predicts that the damping time tD is
a function of the period P, the geometric ratio (R/l), and
the external/internal density ratio � ¼ ne=ni (eq. [4]),
without any free parameter,

tRA
D ¼ 2qTBRP

�l

ð1þ �Þ
ð1� �Þ : ð26Þ

We test this scaling law in Figure 9 (right panel) and find a
mean ratio of tRA

D =tobsD ¼ 0:37� 0:15, so theory and obser-
vations agree within a factor of 3, where the dis-
crepancy probably is due to the underestimation of the
background density when measured with a narrowband
filter.

Alternatively, we might test the scaling law for phase
mixing (Heyvaerts & Priest 1983; Roberts 2000), which
predicts the following dependence:

tPMD ¼
6L2l2inh
��2v2A

� �1=3

¼ 3

��2

� �1=3

ðPlÞ2=3 ; ð27Þ

where L is the loop length, linh is the scale of inhomogeneity
(which we set equal to our skin depth here), � is the coronal
viscosity, and vA is the Alfvén speed inside the flux tube,
which amounts to vA ¼

ffiffiffi
2

p
L=P for the kink mode in a low-

� plasma (Nakariakov & Ofman 2001). We calculate the
predicted damping times with a standard value of the
coronal viscosity, � ¼ 4� 1013 cm2 s�1, and plot them in
Figure 9 (left panel). We find an average ratio of
tPMD =tobsD ¼ 0:79� 0:19, which closely agrees with the
observations. Thus, the model of phase mixing cannot be
excluded as an alternative interpretation.

A corresponding test of the scaling law tD / P for reso-
nant absorption and tD / ðLPÞ2=3 has been performed in
Ofman &Aschwanden (2002) that showed also a slight pref-
erence for phase mixing. The test here, however, is more
constrained. There are three differences to the former study:
(1) we do not make the assumption that the spatial scale of

inhomogeneity linh is proportional to the loop length L or
loop width w, (2) the loop widths wloop ¼ aþ b are mea-
sured here from the deconvolved density profiles and not
from the FWHM of the flux profiles, and (3) we measure
here the (outer) loop radius a and spatial scale of inhomoge-
neity l separately, which were set equal to each other in the
former study. Nevertheless, we obtain similar results that
both models are roughly consistent with the observations.

3. CONCLUSIONS

In this study we modeled the cross-sectional density pro-
files ne(r) of oscillating loops, specified by the outer radius a,
skin depth l, internal density ni, and external density ne.
These parameters allow us to test the theoretically predicted
relation between the damping time tD, oscillation period P,
geometry (a, l), and density parameters (ne, ni) for the damp-
ing mechanism of resonant absorption. Because we can
measure all these observables, we have no free parameters in
the model and thus are able to perform a very strict consis-
tency test between theory and observations. The alternative
damping mechanism of phase mixing can be tested with
these measured parameters also, but there is a free param-
eter, namely, the viscosity, which cannot directly be
constrained by observations to date. Our observational test
yields the following results:

1. The means and standard deviations of our mea-
sured parameters are as follows (see Table 4): outer loop
radius a ¼ 4:5� 3:5 Mm, loop skin depth l ¼ 3:9� 3:1
Mm, skin depth ratio l=a ¼ 0:85� 0:08, internal loop
density ni ¼ ð1:4� 0:7Þ � 109 cm�3, external loop
density ne ¼ ð0:36� 0:18Þ � 109 cm�3, and density ratio
� ¼ ne=ni ¼ 0:30� 0:16. These are the averages of 11
oscillating loop events.
2. In a previous study we measured the corresponding

oscillation periods, P ¼ 317� 114 s, and the damping
times, tD ¼ 574� 320 s, which yield a mean ratio of
tD=P ¼ 1:8� 0:8. According to the resonant damping
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Fig. 9.—Left: Scaling of loop oscillation damping time tD with (aP),
which does not show a close correlation. For damping by phase mixing a
scaling of tD / ðPlÞ2=3 is expected. Right: Scaling of loop oscillation
damping time tD with (R/l )P, for which a linear correlation is expected in
the framework of resonant absorption. The linear regression fit shows a
slope of 0:84� 0:34, which is consistent with the expected proportionality.

TABLE 4

Means and Standard Deviations of Measured Parameters

in 11 Oscillation Events

Parameter

Mean and

StandardDeviation

Loop curvature radiiRcurv............................ 57� 21Mm

Oscillation periodP ..................................... 317� 114 s

Damping time tD .......................................... 574� 320 s

Observed number of oscillations tD/P .......... 1.8� 0.8

Predictedminimum of ratio (tD/P)min .......... 0.32� 0.05

Outer loop radius a ...................................... 4.5� 3.5Mm

Inner loop radius a� l ................................. 0.6� 0.5Mm

Mean loop widthwloop ¼ 2a� l ................... 5.1� 3.9Mm

Loop skin depth l ......................................... 3.9� 3.1Mm

Relative loop skin depth l/R ........................ 1.5� 0.2

Loop density ni............................................. (1.4� 0.7)� 109 cm�3

External plasma density neðT ¼ 1 MKÞ ....... (0.36� 0.18)� 109 cm�3

Predicted external plasma density

ne ¼ ni�LEDA ............................................ (0.76� 0.36)� 109 cm�3

Density ratio � ¼ neðT ¼ 1 MKÞ=ni ............ 0.30� 0.16

Predicted density ratio �LEDA ¼ ne=ni .......... 0.53� 0.12

Prediction ratio

ne=neðT ¼ 1 MKÞ ¼ �LEDA=� ................. 2.5� 2.1
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model of Ruderman & Roberts (2002), originally derived
for the thin-boundary approximation and now gener-
alized for the thick-boundary approximation by T. Van
Doorsselaere et al. (2003, in preparation), the observed
damping times constrain (under the assumption of damping
by resonant absorption) a density ratio of �D ¼ 0:53� 0:12,
which is a factor of �LEDA=� � 1:2 3:5 higher than that
measured from the background fluxes with the TRACE 171
Å filter. It is likely that this discrepancy factor results from
the neglected hotter plasma with Te1:5 MK that is not
detected with the 171 Å filter. With this correction, the
damping model or resonant absorption can be considered
as a successful theory to explain the observed damping
times. Alternatively, the model of phase mixing is also
found to be consistent with the data.
3. The damping model by resonant absorption provides

a direct diagnostic of the density ratio �D ¼ ne=ni. The
observed parameters of the loop cross section profiles vary
very little, and the ratio a=l ¼ 1:18� 0:11 varies only by
�10% and can be neglected in the damping formula. The
correction factor for the thick-boundary treatment can then
be taken in the fully nonuniform limit, qTBðl=R ¼ 2Þ � 1:0.
Therefore, we have a very simple relation that predicts the
number of oscillations Nosc ¼ td=P as a function of the
density ratio �D ¼ ne=ni, or vice versa (eq. [16]),

Nosc ¼
tD
P

� 1

�

1þ �D

1� �D
; ð28Þ

�D ¼ ne
ni

� �Nosc � 1

�Nosc þ 1
: ð29Þ

The relation is plotted in Figure 10 and can be used as an
efficient density diagnostic.

This study provides new support for the interpretation of
the damping mechanism of coronal loop oscillations in
terms of the resonant absorption process. A new effect we
learned from this study is the sensitivity to the density con-
trast between the loop and the ambient plasma. In vacuum,
the loop oscillations would be damped within a half oscilla-
tion period, tD=P � 0:5. However, the higher the ambient
plasma density is, the less severe is damping by resonant
absorption, so that undamped oscillations can only be
supported if the density contrast is very little. Asking the
question why only a small subset of all active region loops

exhibit oscillations after a global triggering event, e.g., dur-
ing a flare or a filament destabilization (Schrijver et al.
2002), the mechanism of resonant absorption provides a
plausible explanation that oscillations are most favored in
loops with little density contrast to the ambient plasma,
while all other loops with a large density contrast are
strongly damped within a half oscillation period. For future
work to study the role of resonant absorption, we recom-
mend to model the differential emission measure
distribution of the coronal plasma with multifilter data to
obtain a better estimate of the coronal background density.

We thank Bernie Roberts, Valery Nakariakov, Bart
DePontieu, and Karel Schrijver for helpful discussions. Part
of this work was supported by NASA contract NAS5-38099
(TRACE).

APPENDIX

ESTIMATES OF PARAMETER UNCERTAINTIES

The variables of the damping time tD and period P (Table 1) have been determined in Aschwanden et al. (2002) without an
estimate of the uncertainty. Based on multiple trials with different background subtractions, we estimate the uncertainty of the
damping time to be of order �tD � tD=3; e.g., compare the result of tD ¼ 1200 s for event 1a in Aschwanden et al. (2002) versus
tD ¼ 870 s in Nakariakov et al. (1999). The error in the period measurement P can be neglected because repeated fitting with
different background subtractions reproduced this value within a few percent, so the error is much smaller than the error of
the damping time tD. In addition, the errors in the parameters l1 � l0, b1 � b0, Rcurv, # and the derived quantities hosc (eq. [25])
and d (eq. [24]) are accurate to a few percent and thus the uncertainties can be neglected. The equivalent column depth zeq
(eq. [19]) is a theoretical quantity that has nomeasurement error.

For all parameters directly measured in this study, Floop, Fback, a, and l (Table 2), we determined the uncertainties
�Floop

, �Fback
, �a, and �l from the standard deviations that resulted by averaging the fits of all times per event, ti, i ¼ 1; . . . ; n, with

typically n � 20 30 time steps per event.
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The uncertainties of the derived parameters ni (eq. [14]), qD ¼ tD=P (eq. [4]), X (eq. [6]), �D (eq. [6]), n0 (eq. [22]), ne (eq. [23]),
and � ¼ ne=ni (after eq. [1]) were calculated with the error propagation law,

�ni � ni
1

2Floop

� �
�Floop

; ðA1Þ

�qD ¼ qD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�a=aÞ2 þ ð�l=lÞ2

q
; ðA2Þ

�X ¼ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�tD=tDÞ

2 þ ð�a=aÞ2 þ ð�l=lÞ2
q

; ðA3Þ

��D
¼ �D

2

X 2 � 1

� �
�X ; ðA4Þ

�n0 ¼ n0
1

2Fback

� �
�Fback

; ðA5Þ

�ne ¼ ne
1

2Fback

� �
�Fback

; ðA6Þ

�� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ne=neÞ

2 þ ð�ni=niÞ
2

q
: ðA7Þ
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