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ABSTRACT
The T ransition Region and Coronal Explorer (T RACE) observed a ““ quiet-Sun ÏÏ region on 1999 Feb-

ruary 17 from 02 :15 UT to 3 :00 UT with full resolution pixel size), high cadence (125 s), and deep(0A.5
exposures (65 and 46 s) in the 171 and 195 wavelengths. We start our investigation of the timeA� A�
variability of ““ quiet-Sun ÏÏ images with a detailed analysis of instrumental and nonsolar e†ects, such as
orbital temperature variations, Ðltering of particle radiation spikes, spacecraft pointing drift, and solar
rotation tracking. We quantify the magnitude of various noise components (photon Poisson statistics,
data digitization, data compression, and readout noise) and establish an upper limit for the data noise
level, above which temporal variability can safely be attributed to solar origin. We develop a pattern
recognition code that extracts spatiotemporal events with signiÐcant variability, yielding a total of 3131
events in 171 and 904 events in 195 We classify all 904 events detected in 195 according toA� A� . A�
Ñarelike characteristics and establish a numerical Ñare criterion based on temporal, spatial, and dynamic
cross-correlation coefficients between the two observed temperatures (0.9 and 1.4 MK). This numerical
criterion matches the visual Ñare classiÐcation in 83% of the cases and can be used for automated Ñare
search. Using this Ñare discrimination criterion we Ðnd that only 35% (and 25%) of the events detected
in 171 (and 195) represent Ñarelike events. The discrimination of Ñare events leads to a frequencyA�
distribution of peak Ñuxes, N(*F)P *F~1.83B0.07 at 195 which is signiÐcantly Ñatter than the dis-A� ,
tribution of all events. A sensitive discrimination criterion of Ñare events is therefore important for
microÑare statistics and for conclusions on their occurrence rate and efficiency for coronal heating.
Subject headings : Sun: chromosphere È Sun: corona È Sun: transition region È Sun: UV radiation

1. INTRODUCTION

Recent spacecraft observations in soft X-rays (SXR) and
extreme ultraviolet (EUV) have established that there is no
such thing as a ““ quiet Sun ÏÏ when observed with high
spatial and temporal resolution. A review on Ðrst results
(Schrijver et al. 1999) made by the T ransition Region and
Coronal Explorer (T RACE) (Tarbell et al. 1994 ; Handy et
al. 1999), which carries on board an EUV imager with the
highest resolution pixel size) ever Ñown, illustrates the(0A.5
omnipresent dynamics of the coronal plasma, evolving vir-
tually anytime at every place on the Sun. The new T RACE
observations entail coronal loop dynamics (motions, oscil-
lations, weaving, twisting, meandering, rotations, mass
Ñows in loops) as well as chromospheric dynamics (in steep
temperature gradients at the footpoints of hot coronal
loops due to thermal conduction). Besides the plasma
dynamics driven by magnetohydrodynamic processes, there
are also the more violent Ñare processes driven by magnetic
reconnection and the kinematics of nonthermal energetic
particles. With increased resolution and sensitivity it
became feasible to observe smaller Ñare events, which have
been dubbed microÑares and nanoÑares, because they carry
as little as a fraction of 10~6 and 10~9 in energy compared
with the largest observed Ñare events seen in hard X-rays
(HXR). While large Ñares are generally harbored by active
regions of substantial size, microÑares were found all over
the Sun, in miniÈactive regions (also called bright points) or
in the network of the so-called quiet Sun. The study of
microÑares and nanoÑares is motivated for two reasons : (1)
Are the smallest Ñares governed by the same physical pro-
cesses as large Ñares, possibly manifesting the most elemen-
tary physical mechanisms involved in Ñares at large, and (2)

do the statistics of microÑares diverge at the low end,
leaving open an arbitrarily large energy reservoir to heat
the solar corona. Because a smaller spatial scale goes along
with a higher occurrence rate, it became feasible to gather
large statistics of brightenings with automated algorithms
(e.g., Berghmans, Clette, & Moses 1998 ; Krucker & Benz
1998). The trade-o† of large statistics is obviously that less
attention is paid to individual events, which is particularly
dangerous when the selection criteria of individual events
are not well deÐned or cannot be quantiÐed by sensible
criteria. In previous work with event statistics, the selection
criteria were mainly based on the discrimination of small
events against instrumental noise, using a 3 p signiÐcance
criterion or the like. However, given the variety of multi-
faceted plasma motions seen in T RACE data, which mimic
time variability with high signiÐcance, it becomes more
intricate to discriminate these phenomena from Ñare pro-
cesses. It is the purpose of this study to identify all known
sources of (instrumental, nonsolar, and solar) time variabil-
ity in EUV images and to establish a reliable criterion to
discriminate microÑare events from other brightenings and
dynamic phenomena in the solar corona.

EUV brightenings have been studied primarily with
Skylab, with the Ultraviolet Spectrometer and Polarimeter
(UVSP) on the Solar Maximum Mission (SMM), with the
Extreme Ultraviolet Imaging Telescope (EIT) on the Solar
and Heliospheric Observatory (SOHO), and now with
T RACE. Individual microÑare events have been studied,
e.g., in C IV, at T \ 105 K (Porter et al. 1987 ; Porter, Fon-
tenla, & Simnett 1995), in Fe IX, at T \ 106 K (Benz &
Krucker 1999 ; Chae et al. 2000 ; Wang et al. 1999), while
larger statistics on EUV brightenings in Fe IX and Fe XII
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FIG. 1.ÈOverview of the observing period on 1999 February 17 01 :30È10 :00 UT. The observing sequence encompasses roughly Ðve spacecraft orbits,
which contain blocks (indicated with gray tone) of interleaved wavelength images with a constant cadence (125 s) and constant exposure times (65 s at 171A�
and 47 s at 195 The orbits are interrupted by passages through the South Atlantic Anomaly and radiation belts, where the automatic exposure timeA� ).
changes according to the particle hit rate. Time periods with atmospheric absorption (AA) detected in EUV are indicated with black bars. The analyzed data
described in this paper refer to a sequence of 22 interleaved images during the Ðrst block at 02 :15È03 :00 UT.

(T \ 1.4] 106 K) were reported by Berghmans et al.
(1998), Benz & Krucker (1998), and Krucker & Benz (1998).
Often it is assumed that microÑares are governed by similar
physical processes as large Ñares and thereby have the
potential to provide heating mechanisms for the corona at
large. While recent statistical studies have been performed
with B5A pixel size) spatial resolution (using SOHO/(2A.5
EIT), the unprecedented resolution of B1A pixel size)(0A.5
with T RACE bears the potential to resolve up to an order
of magnitude more microÑares and thus may reveal crucial
statistics at the low end of the frequency distribution that is
most relevant for coronal heating.

The plan of the paper is the following : Using some dedi-
cated observations of the ““ quiet Sun ÏÏ while pointing to a
coronal hole (° 2) we analyze Ðrst all instrumental e†ects
that are important to Ðlter out unwanted artiÐcial time
variability and we characterize the data noise (° 3). We
perform then a variability analysis with a grid of 4] 4
macropixels and localize macropixels with signiÐcant varia-
bility (° 4). We develop a pattern recognition code that

assembles signiÐcant spatiotemporal patterns to events (° 5).
We then inspect all events and apply a phenomenological
classiÐcation to sort out Ñare events from other dynamic
transients and then establish an objective ““ numerical Ñare
criterion ÏÏ that can be used for automated Ñare search (° 6).
We discuss the physical deÐnition of Ñare events (° 7.1) and
compare the obtained EUV frequency distributions of Ñare
events with those from other wavelengths (° 7.2). Conclu-
sions are summarized in ° 8.

2. OBSERVATIONS

A special observing sequence was performed with the
T ransition Region and Coronal Explorer (T RACE) (Tarbell
et al. 1994 ; Handy et al. 1999) to study the variability of the
quiet Sun, requiring long exposures with the highest
cadence possible, as well as two wavelengths to provide
temperature and emission measure diagnostics. The obser-
vation took place on 1999 February 17, 01 :30È10 :00 UT,
extending over 8.5 hr. During this time interval, a total of
173 full-resolution images (with 1024 ] 1024 pixels and

TABLE 1

TIMES OF ANALYZED TRACE 171 AND 195 OBSERVATIONSA� A�

Wavelength Start Time End Time Exposure Time Cadence
Orbit Number (A� ) (1999 Feb 17 UT) (1999 Feb 17 UT) (s) (s) Number of Images

1 . . . . . . . . . . . . . . . 171 02 :15 :16.0 02 :58 :55.0 65.5 125.0 22
195 02 :16 :06.0 02 :59 :45.0 46.3 125.0 22

2 . . . . . . . . . . . . . . . 171 04 :06 :21.0 04 :41 :43.0 65.5 125.0 18
195 04 :05 :07.0 04 :40 :20.0 46.3 125.0 18

3 . . . . . . . . . . . . . . . 171 05 :45 :56.0 06 :08 :47.0 65.5 125.0 12
195 05 :46 :47.0 06 :09 :38.0 46.3 125.0 12

4 . . . . . . . . . . . . . . . 171 07 :14 :17.0 07 :43 :23.0 65.5 125.0 15
195 07 :13 :03.0 07 :42 :09.0 46.3 125.0 15
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pixel size of were recorded at a wavelength of 1710A.5) A�
and 168 interleaved full-resolution images at a wavelength
of 195 Owing to an automatic exposure control mecha-A� .
nism to protect the lifetime of the CCD, the exposure times
vary from 1.7 to 185 s during our observing sequence
(Fig. 1). The most frequent exposure times are 65.536 s at
171 (141 images) and 46.340 s at 195 (99 images). InA� A�
order to have a constant rms noise, we select images with
identical exposure times in each wavelength, i.e., those with
the most frequent exposure times. Further, we require a
constant cadence for each pair of 171 and 195 images,A�
which is most frequently a cadence of 125 s. The total time
sequence of 8.5 hr includes approximately Ðve spacecraft
orbits, containing four blocks with continuous cadences of
125 s and constant exposure times, interrupted by time gaps
with variable (mostly shorter) exposure times due to entry
of the spacecraft in South Atlantic Anomaly (SAA) and
regions of enhanced particle precipitation from the EarthÏs
radiation belt. The start and end times of these four selected
time blocks are listed in Table 1, containing 22, 18, 12, and
15 image pairs during the four orbits, i.e., a total of 67
images in each wavelength. In this Ðrst paper we restrict
ourselves on the analysis of the Ðrst orbit.

3. INSTRUMENTAL AND NONSOLAR EFFECTS

The primary purpose of this data analysis is to discrimi-
nate instrumental, nonsolar, and solar e†ects that contrib-
ute to time variability in the observed T RACE images, a
quantiÐcation of their magnitude, and their correction in
the data in order to provide accurate statistics of solar tran-
sients and microÑaring. Standard software used for pro-
cessing of T RACE data can be found in Solar SoftWare
(SSW) libraries (Freeland & Handy 1998), which run in IDL
software environment.

3.1. Flat-Fielding and Correction of Bad Pixels
A Ðrst step in processing the original data is to subtract

an image of the dark pedestal (Analog-Digital-Converter
[ADC] o†set), which is done with the standard software
provided by the T RACE team (IDL procedure
TRACE–PREP, status 1999 April). For our set of images
during the Ðrst orbit, the pedestal and dark current value of
the images is 87.96 data numbers (DN), with a standard
deviation of DN. The basic data number unit ofpdark \ 1.32
1 DN corresponds to an ampliÐer gain of 12 electrons
DN~1 (for default ampliÐer A; Handy et al. 1999), where
each electron corresponds to a detected photon that passes
into the lumogen coating (that Ñuoresces at visible wave-
length when hit by UV and EUV photons).

Besides subtraction of the pedestal value, a further cor-
rection is Ñat-Ðelding for bad pixels (with efficiency less than
100%). Currently, Ñat-Ðeld correction is not applied to any
of the T RACE images.

3.2. Orbital T emperature V ariations
The T RACE spacecraft is in a Sun-synchronous polar

orbit of 600 ] 650 km at an inclination of following97¡.8,
roughly the solar terminator. This orbit had uninterrupted
sunshine during the Ðrst 7 months after launch (1998 AprilÈ
October), followed by a 3 month period of partial eclipse
(1998 NovemberÈ1999 January). In 1999 February, shortly
after the eclipse period, EUV absorption and variation of
the spacecraft temperature was detected, probably caused
by the varying geometry of the Earth shine and albedo.

Absorption of EUV emission reduces the observed Ñux.
The orbit predict data indicate signiÐcant atmospheric
absorption during the time intervals 01 :48 :18È02 :08 :43
UT, 03 :25 :25È03 :45 :49 UT, 05 :02 :33È05 :22 :55 UT,
06 :39 :41È07 :00 :00 UT, 08 :16 :49È08 :37 :06 UT, and
09 :53 :57È10 :14 :11 UT (marked with black bars in Fig. 1).
These intervals approximately correspond to the time inter-
vals when the automatic exposure control switched to
longer exposure times at 171 (see Fig. 1). However, atmo-A�
spheric absorption seems not to be severe during the time
interval selected for analysis here (marked with gray tone
labeled orbit 1 in Fig. 1).

Temperature changes in the spacecraft can vary the ped-
estal value and noise of the readout current of the CCD
camera and thus can introduce variablility in di†erence
images. To quantify this e†ect we plot a histogram N( f ) of
the Ñux f (in DN counts per exposure time per pixel) for a
sequence of 22 images, shown in Figure 2 for both wave-
lengths. We Ðt a Gaussian to the peak of the logarithmic
distribution N( f ), which indicates the most likely Ñux level
of the static quiet Sun. We Ðnd a shift of the Gaussian peak
by *f B ]3 DN during this orbit in both wavelengths,
varying from 30.4 to 33.1 DN at 171 and from 19.3 to 22.6A�
DN at 195 (Fig. 2 [left]). This systematic increase of theA�
pedestal value (Fig. 2 [top right]) seems to be related to a
systematic temperature decrease during this part of the
orbit (Fig. 2 [bottom right]). The o†set of the count*forbitrate is not exactly proportional to the temperature change
of the CCD camera because the used temperature sensor (at
the CCD camera) is displaced from the electronics most
sensitive to the orbital temperature changes and thus intro-
duces a hysteresis e†ect. We correct for this temperature-
related variability by subtraction of the time-dependent
peak o†set using the values shown in Figure 2 (top*forbit(t),right).

3.3. Correction of Hot Pixels
Contrary to the bad pixels, which show up in the white-

light Ñat Ðeld and indicate a permanent underefficiency
(probably due to fabrication artifacts), there are also tempo-
rary ““ hot pixels, ÏÏ which produce a high readout current
that remains high for some period of time, probably because
some electrons are not properly Ñushed out after a CCD
readout. These hot pixels are easy to detect because they
appear persistently over some period of time, mostly iso-
lated in single pixels, which show much higher counts than
the surrounding pixels. In our time sequence of 22 images
we detect such hot pixels by comparing the counts of each
pixel with the average of the nearest neighbors (in af

ijk3 ] 3 area) in the preceding and following time steps
i.e.,(t

k~1, t
k`1),

f
ijk
neighbor\ 1

16
[;f

i{j{k~1] ;f
i{j{k`1] (1)

i@\ i [ 1, i, i ] 1, j@\ j [ 1, j, j ] 1, i@j@D ij .

We identify hot pixels above a threshold factor qthresh\ 1.5
(or 1.15), compared with the count level in the neighbored
pixels, i.e.,

f
ijk
hot[ qthresh f

ijk
neighbor . (2)

The nearest spatial neighbors at time step are ignoredt
kbecause, if is a pixel with a cosmic-ray hit, its spatialf

ijkneighbors are also a†ected at time but unlikely at timest
k
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FIG. 2.ÈDistribution of counts (DN) in the sequence of 22 analyzed images is shown around the most frequent values (B30 DN at 171 and B20 DN atA�
195 in the histograms on the left-hand side. A Gaussian is Ðtted to the logarithmic distribution near each peak to evaluate a time-dependent o†set ofA� ) *forbitthe most frequent DN value. This o†set (top right) is found to be correlated with the orbital variation of the spacecraft temperature (bottom right).*forbit TCCD

and Requiring a persistence of 50% in time (i.e.,t
k~1 t

k`1.contiguously present in 50% of the time series), we Ðnd a
total of 989 hot pixels (0.09%) in our time series at 171 A�
and a total of 1195 hot pixels (0.11%) at 195 inside theA�
illuminated circular area of the CCD camera. These hot
pixels are corrected by replacing them with the averagef

ijk
hot

neighbor value f
ijk
neighbor.

3.4. Filtering of Particle Radiation Spikes
The 600 km altitude of the T RACE orbit leads through

locations of the South Atlantic Anomaly (SAA) and near-
polar latitudes of enhanced auroral particle precipitation
from the radiation belt. During the passage of such loca-
tions, particle hits (mainly from B1 MeV electrons) on the
CCD camera become occasionally quite severe, in particu-
lar in long-exposure images as used here (a†ecting [105
pixels out of the 106 in each image). Fortunately the signa-
tures of cosmic-ray hits are easily recognizable as single-
pixel spikes that are about 1È2 orders of magnitude higher
than the rms Ñuctuations of the quiet Sun. These single-
pixel spikes are generally surrounded by a ring of next-
neighbor pixels that are also enhanced to some fraction due
to the jpeg data compression scheme. A standard procedure
is provided in the software of the T RACE team, called
TRACE–UNSPIKE, which replaces a spiky pixel (with an
excess Ñux of 15% relative to the local median value) by this
median value (deÐned by the nearest eight neighbors in a
3 ] 3 pixel area around the spike). This procedure can be
applied iteratively 3 times to clean up the ringlike residuals
around the spike caused by the jpeg data compression algo-
rithm. Because this standard procedure turned out to be

insufficient for most of the long-exposure images here (since
the number of noisy pixels increases proportionally to the
exposure time for a constant hit rate), we develop a more
efficient Ðlter (called TRACE–UNSPIKE–TIME) that uses
a combination of spatial and temporal nearest neighbor
pixels. The average of the nearest two temporal neighbors is

f
ijk
time \ 12[ f

i,j,k~1 ] f
i,j,k`1] . (3)

A spiky pixel is detected if its counts exceed the tem-f
ijk
spike

poral average by a factor (or 1.15), i.e.,qthresh\ 1.5

f
ijk
spike[ qthresh f

ijk
time , (4)

and is then corrected with the temporal average Anf
ijk
time.

example of this cleaning algorithm is shown in Figure 3,
enlarged from a subÐeld of 80 ] 80 pixels. Two strong
cosmic-ray hits seen in this subÐeld have diameters of 3È4
pixels, which are properly cleaned after one iteration. The
histogram (Fig. 3 [right]) shows a mean value of B20 DN
for the background. The Ðlter criterion with a factor 1.5
removes all spikes with DN excess above the tempo-Z10
rally averaged background. This algorithm removes also
cosmic-ray streaks of sufficient intensity (with an excess of

DN). A potential danger is that narrow loops thatZ10
have an appearance almost indistinguishable from linear
streaks could be Ðltered away. We investigated the cleaning
efficiency with various thresholds and found an optimum in
a range of Lower valuesqthreshB 1.15 . . . 1.50. qthresh\ 1.15
have the tendency to ““ overclean ÏÏ by rounding sharp edges
of small-scale structures, while higher values qthresh[ 1.5
leave cosmic-ray spike residuals greater than 10 DN in the
data.
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FIG. 3.ÈFiltering of spikes caused by cosmic-ray hits is illustrated for a subÐeld (pixel range x \ 375 :455, y \ 545 :625) of the Ðrst image of our analyzed
data set, recorded on 1999 February 17 02 :15 :16 UT at 195 The original image is shown top left, and the Ðltered image after subsequent iterations in theA� .
same column, all shown on a linear gray scale with a range of 10È100 DN. The di†erence images in the middle column display the di†erences between
subsequent iterations of our cleaning algorithm, shown on an enhanced linear gray scale with a range of 0È5 DN. The histograms in the right panels show the
pixel value distributions (in DN) of the images (white histograms) and di†erence images (gray histograms). The Ðrst two iterations (““ coarse cleaning ÏÏ) are
performed with a threshold of while the third iteration (““ deep cleaning ÏÏ) uses a threshold ofqthresh \ 1.5, qthresh \ 1.15.

We perform the cleaning of our time sequence of 22
images (in both wavelengths) in two steps, applying Ðrst two
iterations with a coarse cleaning threshold of qthresh\ 1.5,
followed by a third iteration of deep cleaning with a lower
threshold The efficiency of this cleaning algo-qthresh\ 1.15.
rithm after each iteration is illustrated in Figure 3. The total
number of corrected noisy pixels amounts to B6%È10%
per image. The lower percentage applies to quiet times of
the orbit, while the higher percentage applies to passages
through radiation belts. These numbers of cosmic-ray hits
apply to an exposure time of 65 and 47 s at the two wave-
lengths, yielding a cosmic-ray hit rate of B(1È2)] 103 par-
ticle hits on the CCD camera per second.

3.5. Correction of Solar Rotation
The T RACE telescope was pointing to 58A west and 133A

south of the Sun center during this observing run, without
tracking the solar rotation. In order to obtain cospatial
time series in each image pixel, we transform the image
coordinates into a corotating coordinate system, which has

a relative velocity of

vrot \
2nR

_
Tsyn

\ 1.8557 km s~1\ 0A.00256 s~1 (5)

at Sun center, with km and a synodic rota-R
_

\ 696,000
tion period of days. The correction betweenTsyn \ 27.2753
two subsequent images (with a cadence of 125 s and a pixel
size of amounts therefore to 0.64 pixels, accumulating0A.5)
to 13.44 pixels between the Ðrst and last (22d) image of our
Ðrst data set. The nonoverlapping 13 pixel wide strip is
discarded in our further analysis.

3.6. Spacecraft Pointing Drift
The pointing of the T RACE spacecraft is controlled by

an Image Stabilization System (ISS) that is expected to
provide a pointing accuracy of 5AÈ10A. A source of dis-
turbance is the quad-shutter, which causes residual changes
of Another factor is temperature changes, which causes0A.5.
some Ñexing between the guide telescope and the main



1032 ASCHWANDEN ET AL. Vol. 535

T RACE telescope, which can cause drifts in the order of
^1A during an orbit.

We measure the pointing accuracy by cross-correlations
(using the IDL procedure GET–CORREL–OFFSETS
from the SSW software) in four image quadrants inside the
circle of the unvignetted CCD Ðeld of view. We plot the
mean of the drift in the x- and y-directions and their stan-
dard deviation (among the four image quadrants) in Figure
4, for both the 171 and 195 image time series. The corre-A�
lation o†set in 195 shows a much larger standard devi-A�
ation among the four quadrants, probably because some
are dominated by single microÑares with some dynamic
evolution and centroid shifts of order 10A. The 171 imageA�
shows a much smaller scatter among the four quadrants,
probably because there are more numerous features visible
that average out the individual eigenmotions. For correc-
tion of the pointing drift in the data we use the smoothed
pointing o†sets (smoothed with a boxcar of Ðve time steps ;
see the thick solid lines in Fig. 4). The smoothed pointing
drift in the x-direction is then found to have the following
extrema: ]0.87 pixels at time step 7 (after 15 minutes) and
[1.96 pixels at time step 22 (after 44 minutes). The
smoothed pointing drift in the y-direction has the following
extrema: ]0.00 pixels at time step 0 and [3.11 pixels at
time step 22 (after 44 minutes). The maximum drift of the
pointing during our Ðrst orbit is therefore only 4.2 pixels or

We correct the data by bilinear interpolation in a coor-2A.1.
dinate grid that is shifted by these pointing o†sets.

FIG. 4.ÈSpacecraft pointing drift is shown from cross-correlations
measurements with respect to the Ðrst image of the time sequence during
02 :15È03 :00 UT. The thin line and error bars indicate the mean and
standard deviations among cross-correlations performed in four image
quadrants (inscribed to the circle of the illuminated CCD camera Ðeld of
view). The thick line represents a Ðve-point gliding average. The pointing
drift in the x-direction is shown in the top panels for both wavelengths and
in the y-direction in the bottom panels. Note that the larger scatter of the
pointing in 195 is probably caused by the centroid motion of individualA�
microÑares. A prediction of the pointing drift based on temperature sensor
information is shown also (ragged line), which is very consistent with the
drift measured from cross-correlations in the y-direction, but predicts less
drift in the x-direction.

Additional information on the pointing drift is obtained
from temperature sensors on the telescope spider structure.
Tarbell found from other T RACE data (1998 October 14,
8È12 UT) a good correlation between temperature changes
measured by temperature sensor 6 on the metering tube B
(spider nr 0) and the pointing drift in the north-south direc-
tion,

*ypointingB [43 *TNo.6 (pixels) , (6)

and between temperature changes (in centigrade)TNo.6measured by temperature sensor 7 on the metering tube B
(spider nr ]120) and the pointing drift in the east-west
direction,

*xpointingB [23 *TNo.7 (pixels) . (7)

The predicted pointing drifts are shown in Figure 4, which
match the values found from cross-correlation shifts in the
y-direction but predict less in the x-direction. Therefore, we
have an independent corroboration of the pointing correc-
tion in the y-direction.

3.7. Data Noise
The rms noise in the data is composed of a number of

instrumental components, which we estimate in the follow-
ing, and are compiled in Table 2, including photon Poisson
noise, electronic readout noise, data digitization, data com-
pression, dark-current noise, and residual noise from
cosmic-ray hits. Various noise components are speciÐed in
units of data numbers (DN), which are accumulated over a
Ðxed exposure time of 65.5 s (at 171 and 46.3 s (at 195A� ) A� )
in our data set.

Let us Ðrst estimate the photon statistics. The quantum
efficiency of the T RACE CCD is 0.08È0.09 electrons
photon~1 (Handy et al. 1999, Table V), which is relatively
low owing to the lumogen coating in front of the CCD (to
boost the EUV sensitivity). Thus, about 1 photon is e†ec-
tively detected from 11 incident photons. Each detected
photon produces an electron in the silicon pixel, which is
ampliÐed and produces an Analog-Digital Converter
(ADC) readout with a conversion factor of 12 electrons
DN~1. From the histograms of the most frequent pixel
values (see Fig. 2) we Ðnd a typical background level of

DN at 171 and DN at 195fquietB 30 A� fquietB 20 A� .
Assuming Poisson statistics for the incoming detected
photons, we expect therefore a photon noise of pphoton\

DN at 171 (and 1.29 DN( fquiet] 12)1@2/12 \ 1.58 A�
at 195 A� ).

There is a readout noise with an rms of 20 electrons for
the T RACE CCD camera (Handy et al. 1999, Table IV),
which converts into DN.preadout \ 20/12 \ 1.67

The digitization of the data numbers allows us only to
store the data with an accuracy of ^0.5 digits and thus
introduces an uncertainty of DN.pdigit \ 0.5

The accuracy of the stored data is further reduced by the
jpeg data compression algorithm, which allows us to reduce
the large data amount signiÐcantly. During our obser-
vation, a lossless compression algorithm was used, which
reduces the accuracy of the compressed data almost
unnoticeably. For ““ lossless ÏÏ compression, only 7%È9% of
the pixels are found to have an error of ^1 DN. Therefore,
the average noise due to lossless compression averaged over
the entire image is DN.pcompress [ 0.1

The subtraction of the dark current with a pedestal value
(° 3.1) as well as the subtraction of a temperature-dependent
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TABLE 2

DATA NOISE COMPONENTS OF TRACE 171 AND 195 IMAGES (WITH 65 AND 46 S S EXPOSURE TIME)A� A�

171 A� 195 A� 171 A� 195 A�
Single Pixel Single Pixel 42 Macropixel 42 Macropixel

Noise Component (DN) (DN) (DN) (DN)

A.

Quiet-Sun background counts Fquiet . . . . . . . . . . 30 20 30 20
Photon noise pphoton(C) . . . . . . . . . . . . . . . . . . . . . . . . . 1.58 1.29 0.40 0.32
Readout noise preadout . . . . . . . . . . . . . . . . . . . . . . . . . . 1.67 1.67 0.42 0.42
Digitization noise pdigit . . . . . . . . . . . . . . . . . . . . . . . . . 0.50 0.50 0.13 0.13
Lossless compression pcompress . . . . . . . . . . . . . . . . . 0.10 0.10 0.03 0.03
Pedestal/Dark current pdark . . . . . . . . . . . . . . . . . . . . 1.32 1.32 0.33 0.33
Integer subtraction psubtract . . . . . . . . . . . . . . . . . . . . . 0.70 0.70 0.17 0.17
Spike residuals pspikes . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.50 3.00 1.12 0.75
Predicted data noise pnoise . . . . . . . . . . . . . . . . . . . . . 5.29 4.00 1.32 1.00

B.

Number of valid macropixels . . . . . . . . . . . . . . . . . . 38,622 (100%) 38,622 (100%)
Predicted signiÐcant pixels N([3 pnoise) . . . . . . 20,902 (54%) 4794 (12%)
Measured signiÐcant pixels N([3 prms) . . . . . . 18,859 (49%) 5857 (15%)

FIG. 5.ÈTheoretical data noise model is shown as function of the pixel
Ñux (thick line), (see eq. [9]). The most dominant noise source, i.e.,prms( f )residuals of cosmic-ray spikes, is shown also (dashed line). This predicted
noise level is compared with the rms Ñuctuations measured in 4] 4
macropixels (dots), which contain besides instrumental data noise also real
solar Ñuctuations. Note that the lower envelope of the measured data noise
agrees well with the theoretical noise model.

background variation (° 3.2) are done in integer DN and
thus add two further digitization uncertainties, psubtract\DN.0.5] J2 \ 0.7

The largest contribution to data noise results from the
removal of cosmic-ray hits or from the residuals left by the
cleaning process. In our cleaning algorithm we set a thresh-
old of 15% (deep cleaning), which translates into residuals
of DN at 171 andpspikes( fquiet) \ fquiet(qthresh[ 1)\ 4.5 A�
3.0 DN at 195 We Ðnd that B10% of all image pixelsA� .
were hit by cosmic rays. Even if all these pixels were prop-
erly cleaned, we expect that about the next four nearest
neighbors are enhanced above some level, which are not
further cleaned if they have an excess below the thresholds.
Thus we estimate that B40% neighbor pixels have cosmic-
ray residuals comparable to the threshold. We assume
therefore as worst case that most of the pixels have residuals
somewhat below the cleaning threshold.

Combining all these uncertainties, assumed to be inde-
pendent, we expect a total rms data noise of

pnoise2 ( f ) \ pphoton2 ( f ) ] preadout2 ] pdigit2 ] pcompress2 ] pdark2

] psubtract2 ] pspikes2 ( f ) , (8)

which amounts to DN at 171 andpnoise( fquiet) \ 5.29 A�
DN at 195 In the following datapnoise( fquiet) \ 4.00 A� .

analysis we will use macropixels, which include spatial aver-
ages of 4] 4 pixels. These macropixels represent thus aver-
ages of 42\ 16 values, which have an rms noise that is a
factor of smaller. The predicted data noise inBJ16 \ 4
these macropixels is therefore DN atpnoise@ \ pnoise/4 \ 1.32
171 and DN at 195 .A� pnoise@ \ pnoise/4 \ 1.00 A�

Numerically, the combined data noise deÐned in equa-
tion (8) for macropixels with a length of can benmacro \ 4
expressed as

pnoise( f ) \ 0.574[1] 0.016f ] 0.00426 f 2]1@2

B 0.037 f (DN) . (9)
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For Ñuxes DN the combined data noise is dominatedfZ 20
by the spike residual noise Thus, for count ratespspikes.above the quiet-Sun background of the data noisef[ fquiet,can accurately be approximated by the spike residual noise
component alone, i.e., pnoise( f[ fQuiet)Bpspikes( f ) \(0.15 f )/4 \ 0.037f. The dependence of the theoretically pre-
dicted data noise as function of the count rate f ispnoise( f )shown in Figure 5 (solid line), together with the approx-
imation of the spike residual component (dashed line). A
signiÐcance limit of f[ 3 should establish a reliablepnoiseconÐdence limit between Ñuctuations owing to instrumental
e†ects and those that can be believed to be of solar origin.

4. VARIABILITY ANALYSIS

4.1. Spatial V ariability in Macropixels
The spatiotemporal variability can be analyzed with full

spatial and temporal resolution at the expense of a poor
signal-to-noise ratio or with reduced spatial and/or tempo-
ral resolution with the advantage of a higher signal-to-noise
ratio, which allows detection of signiÐcant structures on
smaller Ñux levels. For an initial variability analysis we
reduce the spatial resolution by a factor of 4 and thus
improve the signal-to-noise ratio by a factor WeJ42\ 4.
refer to these rebinned units as macropixels, which have
a spatial scale of (with a time resolution of4 ] 0A.5 \ 2@@
125 s).

We rebin the full-resolution data cubes from 1999 Feb-
ruary 17 02 :15È03 :00 UT in 171 and 195 (each of sizeA� A�
1024 ] 1024 ] 22) to 4 ] 4 ] 22 macropixels and obtain
256 ] 256 time proÐles with a length of 22 time steps. We
consider only the central circular part of the image that is
free of vignetting, i.e., within a radius of 500 pixels from the
image center at (512, 512). Because we are interested only in
the variability of the quiet Sun, we discard also 25% of the
southern part of the images where a bright active region
was observed. This leaves us with a fraction 61.4% of the
image pixels, yielding 38,622 valid macropixels or time pro-
Ðles.

The combination of 16 single pixels to 1 macropixel pro-
vides the advantage of measuring empirically the rms Ñuc-
tuations in each macropixel by calculating the mean and
standard deviation of the 16 Ñux values, We plotprms( f ).these measured rms values of the 38,622 macropixels of the
Ðrst image of our analyzed T RACE image sequence in
Figure 5 as function of the average Ñux values f of each
macropixel. The scatterplot shows that the bulk of these
rms values lies above the theoretically estimated data noise

(solid line in Fig. 5), which forms a sharp lowerpnoise( f )cuto†, The few data points below thepnoise( f )[ prms( f ).theoretical noise curve must belong to macropixels that are
free of cosmic-ray hits, for which our noise model overesti-
mates the data noise. On the other side, the majority of data
points has a somewhat larger rms, which is likely to be
associated with true variability of the solar Ñux. Thus the
theoretical noise estimate seems to represent a reli-pnoise( f )able model of the instrumental data noise and nonsolar
data Ñuctuations.

4.2. SigniÐcance of V ariability in Macropixels
We characterize the time variability in the simplest way,

just by measuring the maximum Ñux change f, deÐned by
the di†erence of the maximum and minimum in each time
series of the 38,622 macropixel locations xy, i.e.f

xy
(t)

*f
xy

\ max [ f
xy

(t)][ min [ f
xy

(t)] . (10)

We show a histogram N( f ) of these Ñuctuations in*f
xyFigure 6, displayed on a linear Ñux scale, for both wave-

lengths (Fig. 6 [top] : 171 Fig. 6 [bottom] : 195 thin-A� ; A� ;
lined histograms). The Ñux units *f are given in counts per
integration time, i.e., DN/65.6 s for 171 and DN/46.3 s forA�
195 A� .

There are now two independent ways to estimate the
signiÐcance of these variabilities. One possibility is to use
the measured rms (of spatial variations) in the macropixels
to establish an upper limit of the local data noise level,
measured at the minimum of each time series, prms( fmin).Requiring a signiÐcance level above 3, which has a prob-
ability of only 0.27% for random Ñuctuations in a normal
distribution, we can deÐne the signiÐcance level based on
the empirically measured rms Ñuctuations,

Np \ *f
prms( fmin)

º 3 . (11)

We Ðnd a total of 18,859 macropixels (49%) that have a
signiÐcant time variability in the 171 data cube.(Np º 3) A�
A smaller number of 5857 macropixels (15%) with signiÐ-
cant time variability is found at 195 The distributions ofA� .
these signiÐcant pixels with are shown in Figure 6Npº 3
(thick-lined histogram). The fraction q(*f ) of these signiÐ-
cant pixels to all pixels is also shown in Figure 6
(histograms with gray scale), indicating that undersampling
(say ¹75%) occurs for Ñux changes of DN in both*f [ 10
wavelengths.

A second independent way to estimate the signiÐcance of
time variability in the macropixels is to use the theoretically
calculated data noise (eq. [9]). The statisticalpnoise( f )uncertainty of a Ñux di†erence measured*f \ ( fmax [ fmin)in a time series f (t) with a maximum and afmax^ pnoise( fmax)minimum is expected to have a standardfmin^ pnoise( fmin)deviation of

p*ftheo( fmax, fmin) \ [pnoise2 ( fmax) ] pnoise2 ( fmin)]1@2 . (12)

In analogy with the empirical signiÐcance criterion (eq.
[11]), we deÐne a theoretical signiÐcance criterion,

Nptheo \ *f
p
f
theo º 3 . (13)

Examining the signiÐcance of the time variabilities *f in the
38,622 macropixels with this theoretical criterion Nptheo º 3
we Ðnd a total of 20,902 time series (54%) that fulÐll the
signiÐcance criterion in the 171 data. This is only a 5%A�
di†erence to the result we found from the empirical signiÐ-
cance criterion. Also, we Ðnd a smaller number of 4794
signiÐcant macropixels (12%) at 195 which di†ers onlyA� ,
by 3% from what we found with the empirical signiÐcance
criterion. The corresponding distributions N(*f ) of signiÐ-
cant pixels as function of the variable Ñux *f are also shown
in Figure 6 (halfÈthick-lined histrogram). The good agree-
ment between the two signiÐcance criteria corroborates our
model of the data noise (° 3.7), and we can use either the
empirical or theoretical signiÐcance criterion to separate
data noise from real solar variability in the macropixels.
Relying on this data noise model, we can also predict the
data noise in single pixels, which cannot be measured from
the rms as in macropixels.
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FIG. 6.ÈDistribution of the Ñux variability N(*f ) measured from the di†erence in the time series of each macropixel (thin histogram).*f\ fmax(t)[ fmin(t)A subset of macropixels with Ñuctuations *f[ 3 p (eq. [11]) is represented with a thick solid line, while the predicted distribution based on the theoretical
noise model (eq. [13]) is shown with an half-thick solid line. Note that both the predicted and measured distribution of signiÐcant pixels agree within a few
percent. The undersampling factor of signiÐcantly varying pixels is given as function of the Ñux *f with a gray-colored function, indicating undersampling at

DN.*fZ 10

4.3. Spatial Map of V ariability
In Figure 7 we show spatial maps of macropixels with

signiÐcant variability overlaid on the Ðrst image of(Npº 3),
our time sequence of 171 and 195 images. The selectedA�
Ðeld of view that encompasses the 38,622 macropixels is
outlined in Figure 7. The maps show that the southern half
of the image is dominated by some large-scale structures
that are associated with the bright active region in the south
(eclipsed from our Ðeld of view). The eastern half of the 171

image shows numerous small-scale structures with darkA�
intrusions, similar to the ““ moss ÏÏ structure seen generally in
active regions by T RACE, which has a more di†use appear-
ance in the hotter MK) 195 image. Pixels with(T

e
B 1.4 A�

signiÐcant variability in the 171 image encompass allA�
bright structures associated with the active region and the
mosslike structures. No signiÐcant variability is seen only in

some of the darkest areas in the coronal hole in the north-
ern section. While 49% of the area in the 171 image (Fig.A�
7a) shows signiÐcant variability, this is the case in only 15%
of the area in the 195 image (Fig. 7b), mainly in areasA�
associated with small regions that would be called ““ bright
points ÏÏ in Y ohkoh nomenclature.

5. PATTERN RECOGNITION

5.1. Event DeÐnition
In order to obtain statistics of independent events, we

have to combine variable macropixels that vary temporally
and spatially in a coherent way. Let us deÐne such a coher-
ent spatiotemporal pattern as an event, if it fulÐlls the fol-
lowing two criteria :

1. The spatial extent of an event is deÐned by a cluster of
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FIG. 7a

FIG. 7.ÈSpatial distribution of signiÐcantly varying macropixels (dots) is overlaid on the Ðrst 171 and 195 image of our time series. Note that 18,859A� A�
(48.8%) macropixels are variable in 171 while 5857 (15.2%) macropixels are variable in 195 above a signiÐcance level ofA� , A� , Np [ 3.

spatially neighbored pixels that exhibit coherent time varia-
bility with a signiÐcance of º3 p. The spatial neighborhood
of a pixel includes the nearest 4 side pixels as well as the
nearest 4 diagonal pixels (i.e., up to 8 nearest neighbor
pixels. (For our 4 ] 4 macropixels the distance to the next
nearest neighbors amounts to 1 . . . J2 ] 2@@\ 1400 . . . 2000
km.)

2. Coherent time variability inside the spatial pattern of
an event is deÐned by the temporal coincidence of the peak
Ñux *f (t) (of all spatial macropixels of an event) within a
certain tolerance limit. For our time series with a cadence of
*t \ 125 s, we choose a tolerance limit of ^1*t B 2
minutes.

This event deÐnition is similar to that used by Krucker &
Benz (1998), which instead restrict to 4 nearest spatial
neighbor pixels (in each iteration step) and to a time toler-
ance limit of ^0*t.

5.2. Event Search Algorithm
We design a numeric algorithm for spatiotemporal

pattern recognition in our three-dimensional data cubes
f (x, y, t) (with 256] 256 spatial macropixels and 22 time
steps) :

1. In each time series of the 38,622 valid macropixels, we
determined the Ñux maximum the Ñux minimumfmax(x, y),

the peak time the minimum timefmin(x, y), tpeak(x, y),
and the signiÐcance (eqs. [10] andtmin(x, y), Nsigma(x,y)

[11]). The Ñux variability is characterized by the di†erences
*f (x, y) and is sorted in decreasing\ fmax(x, y)[ fmin(x, y)
order.

2. Starting with the pixel with the largest Ñux variability
*f (x, y) we search for the spatially nearest neighbors with
signiÐcant variability and coincidence of the peak(Np º 3)
time within The spatial search path is pro-tpeak(x, y) ^ *t.
pagated in all four directions (]x, ]y, [x, [y) until rows
and columns are found in all four directions where no pixel
meets the signiÐcance and coincidence criteria. This cluster
deÐnes an event and all macropixels belonging to this event
are eliminated for future events.

3. The remaining spatial macropixels with signiÐcant
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FIG. 7b

variability are re-sorted according to the largest(Np º 3)
Ñux variability *f (x, y) and the algorithm iteratively repeats
steps 2 and 3 to search for further events until no signiÐcant
pixel is left. Events with a size of 1 single macropixel are
ignored.

A consequence of this spatiotemporal algorithm is that
only one (the largest) event is detected in each time series (or
in a given macropixel). However, recurrent activity in a
particular area generally does not peak exactly at the same
location (within the 2A of a macropixel), and thus this
restriction should not e†ect the event statistics.

Some examples of detected events are shown in Figure 8,
showing the Ðrst 12 events (with the highest variability)
detected in the 195 data cube. The pixels that exhibit aA�
signiÐcant variability during their time series are(Np º 3)
marked with cross symbols in Figure 8 (corresponding to
the dot symbols in Fig. 7b), overlaid on the Ñux maps F(x,
y) (contours in Fig. 8). Those pixels that have been clus-
tered to a common event (marked with diamonds in Fig. 8)
have all a coincident temporal peak in their time series
within ^1*t, while the other pixels with cross symbols not

included in the cluster peak at another time (during the
analyzed interval of 45 minutes).

The statistics reveals 3131 events in the 171 data andA�
904 events in the 195 data, recorded within a Ðeld of viewA�
of squared (or 1.33% of the solar surface) during 45B6@.5
minutes. This corresponds to an event rate of about 100
events s~1 at 171 and 25 events s~1 at 195 on the totalA� A�
solar surface.

5.3. Geometry of Events
We characterize the spatial structure of each event with

the following geometric parameters : the center position
the half-axes (l/2, w/2), and orientation angle a of anx

c
, y

c
,

encompassing ellipse. The orientation angle of the ellipse is
derived from a linear regression Ðt y(x) (or x(y) in case of
o a o[ 45¡) of the x, y coordinates of the signiÐcant macro-
pixels that belong to the event. The spatial coordinates of
these macropixels are then rotated by an angle [a into a
coordinate system that is co-aligned with the ellipse axes,
where the length l and maximum width w is measured from
the extrema in the rotated coordinates.
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FIG. 8.ÈSpatial clustering of the pattern recognition code is illustrated for the 12 largest events on 1999 February 17, 02 :15È03 :00 UT. The contours
outline local EUV intensity maps around the detected structures. The crosses mark the positions of macropixels with signiÐcant variability The(Np [ 3).
spatiotemporal pattern algorithm starts at the pixel with the largest variability, which is located at the center of each Ðeld of view, and clusters nearest
neighbors if they fulÐll the time coincidence criterion These macropixels that fulÐll the time coincidence criterion deÐne an event, marked with(tpeak ^ 1*t).
diamonds, and encircled with an ellipse. Each macropixel that is part of an event, is excluded in subsequent events. Note that events 0, 1, 3, and 11 belong the
same active region, where the four zones have peaks at di†erent times and thus make up four di†erent events.

We show the distribution of spatial scales in Figure 9.
The spatial lengths l of events cover a range of lB 3È25
Mm, while the widths cover a range of wB 1.5È10 Mm.
Note that the lower cuto†s of event size scales are given by
the minimum area requirement of two macropixels (l [ 3
Mm, w[ 1.5 Mm). The distribution of lengths l can be
described by an exponential distribution N(l)P exp ([l/2.8
Mm) (Fig. 9 [top]) for both wavelengths. There is a typical
ellipticity ratio of l/wB 2.

5.4. Event Flux F
So far we considered Ñux changes of*f\ f (tmax)[ f (tmin)variable pixels. A scatterplot of the averaged pixel Ñux *f

per event is shown in Figure 9 (bottom panel) as function of
the spatial scale l of the event, which shows no obvious
correlation. The total Ñux of an event is therefore expected
to scale approximately with the area of the event.

We deÐne now the total Ñux of an event, integrated over
the area of all N pixels that belong to an event,

F(t) \ ;
i/1

N
f (x

i
, y

i
, t) \ ;

i/1

NMPS f (x
i
, y

i
, t)TNbin2 , (14)

where S f T represents the average Ñux per macropixel and
represents the number of macropixels with signiÐcantNMPvariability, with a binning factor of for macro-Nbin\ 4
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FIG. 9.ÈDistribution of event length scales L (Mm) (top panels),
average Ñuxes per pixel *f (middle panels), and scatterplot between these
two parameters (bottom panels), for 171 (left-hand column) and 195A� A�
(right-hand column). The distribution N(L ) can approximately be character-
ized with a exponential function, and the distribution N(*f ) with a power
law. There is no obvious correlation between L and *f, suggesting that the
total Ñux of an event scales roughly with the area of an event. The second-
ary distributions (thick lines) represent the selection of Ñare events.

pixels here. Since we are interested only in Ñux changes, we
subtract the event-unrelated background. Estimating the
background level from the minimum time in the timetminseries f (t) [recall that we determined the peak time andtpeakminimum time from the time series of the macropixeltminwith the largest variability *f (t) ; ° 4.2], we deÐne an event
net Ñux *F(t)

*F(t)\ F(t)[ F(tmin) (15)

and denote the peak Ñux of the event shortly by

*F\ *F(t \ tpeak)\ F(tpeak)[ F(tmin) . (16)

The expected standard deviation or the rms noise of an
event is then

p
F
\
C
;
i

N p
f
2
D1@2 \

C
;
i

NMPp
f,MP2
D1@2

. (17)

Similarly we quantify the error bars in time proÐlesp
F
(t)

from the net Ñux F(t) of an event. The signiÐcance level NpEof an event is then deÐned by

NsigmaE \ *F
p
F

. (18)

The event Ñux *F scales approximately with the event
area This is expected if the average Ñux perA\ £

i/1N *x*y.
pixel, S* f T, does not depend much on the event size. In
Figure 9 we show the distribution of mean pixel Ñuxes (Fig.
9 [middle]) and a scatterplot of this mean pixel Ñux S* f T
with the length scale l of events (Fig. 9 [bottom]). There is
indeed no statistically signiÐcant correlation between these
two parameters. The event Ñux is therefore approximately
proportional to the event area, *FP A.

6. DISCRIMINATION OF MICROFLARES

We are approaching now the Ðnal steps of our Ñare
search procedure, i.e., the discrimination of solar Ñare
events from other time-variable phenomena that are not
related to Ñares, microÑares, or nanoÑares. A sensible dis-
crimination criterion is extremely important for estab-
lishing statistics and frequency distributions of Ñares at Ñux
levels near the detection threshold because the smallest Ñare
events are most numerous there and dominate the statistics.
Statistics on Ñare events have been published in previous
studies based on visual inspection of a few of the very
largest events of a data set (usually that represent only[10)
the ““ top of the iceberg, ÏÏ without verifying Ñare character-
istics of the huge number of smaller Ñares (typically[

events). In this study we check each individual102È104
event not only by visual inspection but also establish a
numerical Ñare deÐnition that can be used as a criterion for
automated discrimination against other nonÑaring pheno-
mena.

6.1. Phenomenological ClassiÐcation of Events
We perform a visual inspection of all 904 events detected

in the 195 data in form of Ðgures as shown in FiguresA�
10aÈ10c, containing from both wavelengths : (1) the time
sequence of 22 co-aligned images in 171 and 195 with aA�
Ðeld of view twice the event diameter (Fig. 10 [top panels]),
(2) sum images (summed from Ðve images around the peak
time to improve the signal-to-noise ratio (Fig. 10tpeak)[bottom left-hand panels]), (3) a contour plot of the sum
image (Fig. 10 [bottom second left-hand panels]), (4) a di†er-
ence image (of the sum image at the peak time minustpeakthe sum image at the minimum time and (5) time pro-tmin,Ðles of the integrated Ñux F(t) of variable pixels inside the
event boundaries, including error bars of the combined rms
noise (Fig. 10 [bottom right-hand panels]).

We perform a tentative classiÐcation of these 904 events
into Ðve categories by visual inspection of their spatial mor-
phology : (1) Ñare events with loop structures, (2) events with
amorphous structures, (3) events associated with
““ mosslike ÏÏ structures, (4) events with no recognizable
structure or noisy data, and (5) events with obvious bad
data. We deÐne these Ðve classes and give examples in the
following.

1. Flare events.ÈAn example of a typical (micro-) Ñare
event is shown in Figure 10a (event 8). A Ñare shows typi-
cally one or multiple loop structures that brighten up
(impulsive phase) in both the 171 and 195 wavelengthsA�
and then cool down with an exponential-like decay curve
(postÑare phase). The time proÐles in both wavelengths are
often well correlated, but the wavelength with the cooler
plasma (i.e., MK at 171 peaks a few minutesT

e
B 0.9 A� )

later than the hotter plasma (i.e., MK at 195T
e
B 1.4 A� ).

The spatial structure of a loop displays a curved segment
when seen from a favorable perspective but often shows just



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 10a

FIG. 10b

FIG. 10.È(a) Example of a Ñare event (no. 8), which is visible in both the 195 ( Ðrst and third image sequence row) and the 171 data (second and fourthA� A�
image sequence row). A sum image is shown as gray scale (bottom left) and contour plot (bottom second left). Di†erence images (bottom second right) show the
di†erence between the peak time (no. 5) and the minimum time (no. 16). The time proÐles F(t) (bottom right) are integrated over the area withtpeak tminvariable pixels (marked with crosses in di†erence image). The error bars are calculated from the rms noise of the variable macropixels (eq. [17]). The spatial
cross-correlation coefficient (calculated from the dashed box shown in the sum image) for this event is the dynamic cross-correlation coefficientccc

s
\ 0.64,

(calculated from the dashed box shown in the di†erence image) is and the time cross-correlation coefficient (with a maximum at a delay ofccc
d
\ 0.76,

minutes) is (see text on Ñare criterion, eq. [25]). (b) Example of an amorphous event (no. 170), in similar representation to that of (a).qdelay \ 3.6 ccc
t
\ 0.94

Note the low cross-correlation coefficients that disqualify this event from the Ñare list. (c) Example of a moss-associated event (no. 69), in a similar
representation to that of (a). Note the reticulated moss structure in the 171 images, while a di†use footpoint of a large-scale loop is visible in the 195A� A�
image. The temporal and spatial correlation is marginal.
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FIG. 10c

an elongated elliptical shape. The Ñare loops have a charac-
teristic range of lB 5000È20,000 km and widths of
wB 2000È10,000 km. (Note that the lower limits of spatial
scales are given by the minimum area requirement of two
macropixels, l[ 3 Mm, w[ 1.5 Mm.) These Ñare loops
appear as compact sources, which have much smaller
extents than the high-reaching coronal loops in active
regions, that are often an order of magnitude larger. We
identify a total of 319 (35%) Ñare events of the 904 events
detected in 195 A� .

2. Amorphous structures.ÈIn this category we put all
events with signiÐcant variability that do not show well-
deÐned compact Ñare loops. This category contains vari-
able, di†use large-scale structures, partial brightenings of
large-scale loops, or unsharp structures due to insufficient
signal-to-noise ratio. A possibility is also that moving large-
scale loops mimic local brightness variations at their
boundaries owing to the moving temperature or brightness
gradients. An example is shown in Figure 10b. It is not clear
whether a new loop at the edge of a large-scale structure
brightens up, or if the edge of the large-scale loop is just
moving without intrinsic brightness change. In contrast to
Ñare events, time proÐles at 171 and 195 are generally notA�
correlated in amorphous events. We classify a total of 194
(21%) such amorphous events.

3. ““Moss ÏÏ-associated structures.ÈObservations of
active regions with the T RACE 171 passband commonlyA�
reveal a bright, reticulated, low-lying emission pattern over
magnetic plage regions, which have been dubbed ““moss ÏÏ
because of their spongy appearance (Schrijver et al. 1999 ;
Berger et al. 1999 ; Fletcher & DePontieu 1999). The cool
(0.6È1.5 MK) ““moss ÏÏ structure is located in altitudes of
B5000 km at the footpoints of hot 3È5 MK coronal large-
scale loops (Berger et al. 1999). These Ðndings strongly
suggest that the moss is the high-temperature end of the
transition region in which energy is conducted downward

through a steep temperature gradient (Schrijver et al. 1999).
In this study, we Ðnd similar ““ mosslike ÏÏ structure in the
greater area of active regions or in areas surrounding
coronal holes. The reticulated structure of the moss is best
visible in the 171 images, while the 195 images generallyA� A�
show a di†use cospatial structure, probably representing
the footpoint of a hotter large-scale loop. It appears that
many of these moss-associated variability events di†er fun-
damentally from microÑares because their time proÐles
show a much poorer correlation between 171 and 195A� A�
than Ñare events (Fig. 10c). We Ðnd a total of 62 (6%) moss-
associated events.

4. No structures.ÈIn this group we put all events that do
not show any recognizable spatial structure in the sum or
di†erence images, and have erratic time proÐles. This group
may contain events with noisy data : either random coin-
cidences of noisy pixels that produce accidentally º3 p
Ñuctuations in our detection scheme or nonrandom noise
caused by some instrumental e†ects or residuals of cosmic-
ray hits. They may also contain di†use structures that are
not obvious to the eye. We identify a total of 233 (25%) such
featureless events.

5. Bad data.ÈThis group comprises events that are obvi-
ously a†ected by bad data, e.g., bad (underefficient) pixels,
temporarily hot pixels, data (telemetry) gaps, or obvious
residuals of cosmic-ray hits. An obvious increase of cosmic-
ray hits occurred around 14 :42È14 :46 UT when T RACE
passed through one of the radiation belt zones. The chance
coincidence of particle hits in identical pixels in subsequent
images (or in corrupted neighbor pixels due to the jpeg
compression) must have been higher during these times
(image sequence no. 13È15) so that our time Ðlter (eq. [3])
failed occasionally. These events have a high signiÐcance
and compact sizes like Ñare events but can easily be recog-
nized from their peak time around sequence no. 14),(tpeaktheir short duration, and uncorrelated behavior in 171 and
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195 wavelengths. We identify a total of 95 (10%) of suchA�
events with bad data.

6.2. Quantitative Flare ClassiÐcation Criterion
From the detailed visual inspection of all 904 events

detected in the 195 images we learned that Ñare eventsA�
often do show a highly correlated behavior at di†erent tem-
peratures, e.g., between 0.9 MK (171 and 1.4 MK (195A� ) A� ),
while nonÑaring events do not. It seems therefore to be a
promising approach to use cross-correlation methods to
establish sensitive criteria for a more objective and perhaps
automated detection of Ñare events. For this purpose we
calculate three types of temporal and spatial cross-
correlation coefficients between the two temperatures.

A temporal cross-correlation coefficient is calculatedccc
tand maximized as function of the cross-correlation delay q

(within a time window of q\ ^2*t in order to adjust for
relative delays within ^4 min),

ccc
t
\ max [ccc(q)]\ max [*F171(t)] *F195(t ] q)] ,

(19)

where the net Ñux *F is integrated over an area that is
covered by the signiÐcantly variable macropixels of an
event (eq. [15]). In the same procedure we measure the
relative cross-correlation delay q, which is interpolated by a
quadratic function within the discretized time steps *t,

qDelay\ q omax *ccc(q)+B tpeak(*F171)[ tpeak(*F195) . (20)

A spatial cross-correlation coefficient is calculatedccc
tbetween the spatial Ñux distributions f (x, y) at the two

wavelengths,

ccc
s
\ S f171T(x, y, tpeak)] S f195T(x, y, tpeak) , (21)

where S f T(x, y) represents a temporally averaged map
around the peak time t \ tpeak^ 2*t.

A dynamic (spatial) cross-correlation coefficient isccc
dcalculated between the changes of the spatial Ñux distribu-

tions * f (x, y) at the two wavelengths, which quantiÐes the
correlated behavior of dynamic changes,

ccc
d
\ S* f171T(x, y, tpeak)] S* f195T(x, y, tpeak) (22)

S* f171T(x, y, t
peak

)\ S f171T(x, y, tpeak)
[ S f171T(x, y, tmin) (23)

S* f195T(x, y, t
peak

)\ S f195T(x, y, tpeak)
[ S f195T(x, y, tmin) . (24)

Examples of these parameters and canccc
t
, ccc

s
, ccc

d
, qdelaybe seen for the three cases shown in Figures 10aÈ10c. The

statistical distributions of these parameters are shown for
each of the Ðve event classes in Figure 11. From the histo-
grams shown in Figure 11 (left-hand panels) it can be seen
that about 90% of all Ñare events have a high temporal
cross-correlation coefficient a high spatial cross-ccc

t
Z 0.5,

correlation coefficient and a high dynamic corre-ccc
s
Z 0.5,

lation coefficient while all other event classesccc
d
Z 0.5,

have generally lower values in the cross-correlation coeffi-
cients. The reason for the high cross-correlation coefficients
in Ñare events suggests that Ñares have a relatively broad
di†erential emission measure distribution Q(T )\ dEM(T )/
dT and thus show a correlated evolution in nearby tem-
peratures (e.g., in 0.9 and 1.4 MK of the 171 and 195 A�
wavelengths). Further, we see that most of the Ñares reveal
also a positive time delay of 171 with respect to the 195A� A�
wavelength (Fig. 11 [top right]), which can be explained as

FIG. 11.ÈDistributions of the six parameters *F,ccc
t
, ccc

s
, ccc

d
, qdelay,and separately shown for each of the Ðve phenomenological classes.Np,Note that Ñare events have the highest cross-correlation coefficients but do

not di†er much from other classes with respect to their Ñux *F or signiÐ-
cance Np.

cooling delay of the 1.4 MK plasma down to the 0.9 MK
temperature. However, we do not Ðnd much di†erence in
the average Ñux *F or signiÐcance among the Ðve eventNpclasses (Fig. 11 [middle and bottom panels on right-hand
side]).

Given these preponderance of high cross-correlation
coefficients in Ñare events we deÐne now a quantitative Ñare
criterion that consists of 3 (logical AND) conditions :

FLARE CRITERIONÀ
4
5
6

0
0
ccc

t
º 0.5

ccc
s
º 0.5

ccc
d
º 0.5.

(25)

We test now this quantitative criterion against our phenom-
enological classiÐcation performed for our 904 events
detected in the 195 data cube (° 6.1). In Table 3 we listA�
how many events of every phenomenological class meets
the Ñare condition deÐned in equation (25). If we deÐne the
success rate of our Ñare criterion by the ratio of events that
are consistently classiÐed visually and with the automated
Ñare criterion (i.e., 222 Ñare events plus 526 nonÑare events,
marked with footnote a Table 3), of all classiÐed (903)
events, we obtain a success rate of 83%. In fact, because we
do not know whether a fraction of amorphous or moss-
associated events represent masked Ñares, the success rate
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TABLE 3

TEST OF FLARE CRITERION VERSUS PHENOMENOLOGICAL CLASSIFICATION OF 195 EVENTSA�

Phenomenological Event Class Flare Criterion SatisÐed Flare Criterion Not SatisÐed

1. Flare events . . . . . . . . . . . . . . . . . . . . . 222 (24.6%)a 97 (10.7%)
2. Amorphous events . . . . . . . . . . . . . . 14 (1.5%) 180 (19.9%)a
3. Moss-associated events . . . . . . . . 11 (1.2%) 51 (5.6%)
4. Structureless/noisy events . . . . . . 24 (2.7%) 210 (23.2%)a
5. Events with bad data . . . . . . . . . . 10 (1.1%) 85 (9.4%)a

All classes . . . . . . . . . . . . . . . . . . . . . . . . 281 (31.1%) 623 (68.9%)

a Event classiÐcations for which the Ñare criterion (eq. [25]) is consistent with phenomenological
classes.

could be even higher. On the other hand, because a visual
classiÐcation is always somewhat subjective, phenomeno-
logical classes should just be considered as a Ðrst guide with
a grain of salt. The high consistency between the prediction
of Ñare events and the visual veriÐcation of Ñare events
encourages us to use the Ñare criterion established above
(eq. [25]) as a valid criterion for automated Ñare searches.

We analyze the 171 data cube, in which a total of 3131A�
signiÐcant events have been recognized with our automated
pattern recognition code, using now the automated Ñare

FIG. 12.ÈFrequency distributions of the peak Ñux *F for all events and
subsets of Ñare events. At 195 two variants of Ñare subsets are shown,A�
from the visual classiÐcation (Visual) and from the automated classiÐcation
using Ñare criterion eq. (25) (Auto). The uncertainties in the power-law
slope represent the formal errors of the linear regression Ðts. Note that the
frequency distributions at 171 cannot be Ðtted by a single power law. AA�
broken power-law Ðt is shown.

criterion (eq. [25]). We Ðnd that 798 (25.5%) of all (3131)
signiÐcantly detected events in the 171 data fulÐll ourA�
Ñare criterion. This is a similar percentage as in the 195 A�
data, with 281 (31.1%) of 903 events. The absolute number
of Ñares detected in 171 is, however, a factor of 2.8 larger,A�
probably because there are more cooler MK)(T

e
[ 0.9

microÑares than hotter ones MK).(T
e
B 1.4

6.3. Frequency Distributions of Flare Peak Fluxes N(F)
In Figure 12 we show the distributions N(*F) of peak

Ñuxes *F. The peak Ñux *F represents the total Ñux
increase integrated over the event area, which is the same
quantity that is measured in time proÐles F(t) from instru-
ments without spatial resolution, after subtraction of a pre-
or postevent background, i.e., (when*F\F(tpeak) [ F(tmin)no coincident or time-overlapping events occur). We plot
the frequency distribution or occurrence rate of events,
N(*F), i.e., the number of events per bin (of the Ñux *F), in
the customary form of a log NÈlog S histogram (Fig. 12).
The distribution of all detected (904) events in 195 can beA�
Ðtted with a power-law function N(*F) P F~a with a slope
of a \ 2.08 (Fig. 12 [bottom]). However, if we separate the
Ñare events, we Ðnd a signiÐcantly Ñatter slope, i.e.,
a \ 1.80^ 0.09 for the subset of 319 visually identiÐed
Ñares, and a consistent value of a \ 1.85^ 0.05 for the
subset of 281 automatically detected Ñares (satisfying Ñare
criterion eq. [25]). This result underscores the importance
of a sensible classiÐcation scheme for variability events. The
percentage of nonÑare events seems systematically to
increase with smaller Ñuxes *F, and thus steepens the
power-law slope.

The Ñux distribution of events in the 171 data is shownA�
in Figure 12 (top). This distribution cannot be Ðtted with a
single power law. If we Ðt a double power law, we Ðnd a
slope that varies from a \ 1.93 at small Ñuxes to a \ 2.72 at
large Ñuxes. When we apply the automated Ñare criterion,
we Ðnd for the subset of 798 Ñare events the same trend that
the power-law slopes become Ñatter, i.e., varying from
a \ 1.68 to a \ 2.35.

7. DISCUSSION

This study represents a Ðrst step toward a systematic
analysis of microÑaring in the solar corona. MicroÑaring
has several interesting aspects. On one hand we would like
to know whether microÑares are operated by the same
physical process as large Ñares and what the physical limits
are for the smallest Ñares. On the other hand, the statistical
aspects of microÑares have far-reaching consequences
regarding their energy budget that potentially could make
up a signiÐcant fraction of the energy required to heat the
corona. For both questions, it is of fundamental importance
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to establish a safe and objective criterion to distinguish
microÑare phenomena from numerous other time-variable
Ñuctuations seen in the solar corona. To provide a solid
basis for future studies, this paper is entirely dedicated to
establish solid criteria to identify microÑares at the lowest
Ñux levels. In the following we discuss our Ðndings in the
context of other work, while the physical properties of
microÑares are the subject of Paper II (Aschwanden et al.
2000).

7.1. DeÐning Flare Events in EUV
The classical deÐnition of a Ñare event originated from

the observation of nonthermal particles via bremsstrahlung
in hard X-rays and gyrosynchrotron emission in radio. A
large fraction of the accelerated and emanating energetic
particles necessarily bombard the chromosphere (owing to
the preponderance of closed magnetic Ðeld lines in Ñare
loop conÐgurations) and drive chromospheric evaporation
by local heating at the Ñare loop footpoints. This upÑowing
heated plasma is the brightest manifestation at soft X-ray
wavelengths, and later in extreme ultraviolet (EUV), when it
cools down to temperatures of 1È2 MK. From this canon-
ical Ñare concept we can roughly predict what typical Ñare
signatures in the 171 (Fe IX, 0.9 MK) and 195 (Fe XII,A� A�
1.4 MK) passband of T RACE should look like : The impul-
sive Ñare phase (with a duration of typically 1È2 minutes)
should Ðrst show a rapid increase of the 195 Ñux during aA�
few minutes, followed by an exponential decay due to the
Ñare plasma cooling with a typical cooling time of a few
minutes to hours, depending on the density (which controls
the radiative cooling time) or temperature gradient (which
controls the conductive cooling time) of the Ñare loop.
Because the Ñare loop cooling phase is generally longer
than the preceding impulsive heating phase, the peak of the
EUV emission in the 171 passband should peak some-A�
what later than the 195 peak. The relative time delayA�
corresponds to the time interval during which the bulk of
the Ñare plasma cools down from 1.4 to 0.9 MK. This sce-
nario is largely conÐrmed by our analysis of 171 and 195 A�
observations of Ñare events in T RACE data. In simple
events we see a rise time of 2È4 minutes and an exponential
decay during typically 3È30 minutes, with a relative time
delay of about a minute between the 195 and the 171 peakA�
(e.g., Fig. 10a). If the EUV emission during a Ñare event
comes from the cooling plasma of a single Ñare loop, we
expect that the time proÐles at two nearby temperatures
should be highly correlated, which is indeed the case for the
majority of Ñare events in which we detected a single loop in
the T RACE images. Based on this consistency between
theoretically expected EUV signatures in nearby tem-
peratures and the observed features in the 171 and 195 A�
passbands, we are led to adopt spatial and temporal cross-
correlation coefficients between the two temperature bands
as a well-justiÐed physical criterion to distinguish Ñare
events from other dynamic phenomena.

A question is, however, whether our Ñare criterion rejects
true Ñare events that do not meet our cross-correlation cri-
terion. Table 3 shows that 97 visually classiÐed Ñare events
do not met the Ñare criterion (a fraction of 10.7% of the
entire data set). This misidentiÐed events consist mainly of
Ñare events with a poorer spatial correlation. If we relax the
cross-correlation coefficient requirements by a factor of 2
(i.e., the number ofccc

t
[ 0.25, ccc

s
\ 0.25, ccc

d
\ 0.25),

rejected Ñares can be reduced to one-third, down to 36

(4.0% of the data set), however at the expense of more
accepted nonÑare events, resulting in an overall lower
success rate of 74.0% (measured by the consistency with
visually classiÐed Ñares). Our Ñare criterion has therefore to
be considered as an optimized compromise between Ñare
acceptance and nonÑare rejection, but has soft limits, say
within Investigating further the remaining0.25[ ccc[ 0.5.
misidentiÐed 36 Ñare events with (one of the) ccc\ 0.25 we
Ðnd that the main reason for a poor correlative behavior
comes mainly from confusion by adjacent dynamic activ-
ities that cannot be properly separated in space and time.
Potentially, there is also the possibility that cooler Ñares
with a maximum temperature of MK are detected inT

e
B 1

the 171 waveband, but not in the 195 waveband. OurA� A�
statistics indicate that there is a larger number of cooler
Ñares (798 Ñare events detected in 171 vs. 281 Ñare eventsA�
detected in 195 However, the overlap of the 195A� ). A�
response function with the peak temperature of the 171 A�
passband seems to be sufficient to pick up about 10% of the
emission measure seen at 0.9 MK, the center of the 171 A�
passband. This provides in most of the cases sufficient
counts here to ensure a high cross-correlation coefficient
between the two temperatures, though with less signiÐcance
in the 195 data.A�

Conversely, we may ask whether our Ñare criterion could
be fooled by nonÑaring phenomena that exhibit a highly
correlated behavior in nearby temperatures. Table 3 shows
that the rejection of nonÑare events is fairly rigorous : Only
one of 14 amorphous events, or one of six moss-associated
events, or one of 10 structureless events, or one of 10 bad
data events is misidentiÐed as Ñare event. Totally, only 6.5%
of the data set represent nonÑare events that are mis-
identiÐed as Ñare events. If we would relax the Ñare criterion
to ccc[ 0.25, the fraction of misidentiÐed Ñare events
would rise from 6.5% to 22%.

Despite the total uncertainty of 17% of our Ñare classi-
Ðcation criterion (with a probability of 10.7% to reject Ñare
events and 6.5% to accept nonÑare events), this uncertainty
seems not to introduce a bias in the Ñare occurrence rate as
function of the EUV Ñux. The frequency distribution shown
in Figure 12 shows that the di†erence in the power-law
slope is comparable to the formal error of the Ðt, i.e.,
a \ 1.80^ 0.09 for the subset of visually classiÐed Ñares
versus a \ 1.85^ 0.05 for the subset of automatically clas-
siÐed Ñares.

7.2. Frequency Distributions of Flare EUV Peak Fluxes
The (background-subtracted) peak Ñux *F of a Ñare rep-

resents the simplest and most direct observable parameter
that quantiÐes the magnitude of a Ñare, which can be mea-
sured even from time proÐles of nonimaging instruments.
Most of the published frequency distributions from Ñares
are therefore based on the peak Ñux (see compilation in
Table 1 of Aschwanden, Dennis, & Benz 1998) and thus can
be directly compared with our statistics obtained here. Fre-
quency distributions of Ñare energies, which are more
important with regard to energy budget considerations (e.g.,
to heat the solar corona), require the determination of elec-
tron densities, which is model dependent and will be derived
and modeled in Paper II.

The frequency distribution of the EUV peak Ñux *F of
Ñares detected in 195 (Fe XII, 1.4 MK) can be Ðtted with aA�
power law over a range of 1.6 decades dynamic range in Ñux
(a factor of 40 between the largest and smallest detected
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microÑare). The power-law slope of the distribution
N(*F)P *F~a is found to be a \ 1.83^ 0.07, if we take the
weighted mean of the two values found from both methods
(i.e., Ñare identiÐcation by visual inspection vs. automated
detection). This value is consistent with power-law slopes
found from hard X-ray peak Ñuxes (e.g., a \ 1.8È1.9, Dennis
1985 ; a \ 1.67È1.73, Crosby, Aschwanden, & Dennis 1993 ;
a \ 1.86È2.00, Bromund, McTiernan, & Kane 1995), or
with soft X-ray microÑares (e.g., a \ 1.75, Drake 1971 ;
a \ 1.79È1.86, Lee, Petrosian, & McTiernan 1995) and soft
X-ray brightenings (e.g., a \ 1.68È1.80, Shimizu 1995 ;
Shimojo & Shibata 1999). For EUV emission of Ñares, fre-
quency distributions have been published only recently.
Berghmans et al. (1998) Ðnd a value of a \ 1.35^ 0.2 for
coronal events detected in 195 with SOHO/EITA�
(according to their Fig. 25, where the radiative loss per
event is deÐned to be proportional to the EUV Ñux *F at
195 This value appears to be signiÐcantly lower thanA� ).
that found here, but their frequency distribution also shows
substantial deviations from a power-law function and thus
inherently bears an ill-deÐned power-law slope. Krucker &
Benz (1998), in contrast, Ðnd a signiÐcantly steeper slope of
a \ 2.3È2.6 for the thermal energy in microÑares simul-Ethtaneously detected in 171 and 195 with SOHO/EIT.A� A�
However, these values cannot directly be compared with the
distributions of the peak Ñux *F here because the computa-
tion of the thermal energy is model dependent (i.e.,Ethassumptions on isothermality to infer a Ðlter-ratio tem-
perature ; assumptions on loop widths and column depths
to convert an emission measure into electron density). The
conversion of observed EUV parameters into physical
energy units and the resulting frequency distributions of
EUV Ñare energies is the subject of Paper II. At this point,
in spite of the diverging results of power-law slopes for EUV
Ñare energies published recently, we just note that the fre-
quency distributions of the most directly observable param-
eter, i.e., the peak Ñux *F, shows at 195 (1.4 MK) aA�
frequency distribution that is compatible with previous
results from soft X-ray and hard X-ray peak Ñuxes of Ñares.

At cooler EUV temperatures, namely at MKT
e
\ 0.9

(171 however, we Ðnd a frequency distribution of peakA� ),
Ñuxes *F that cannot be Ðtted with a single power law (Fig.
12 [top]). If we Ðt a two-component power law, we Ðnd a
slope of a B 1.7 for weak Ñuxes [log (*F)\ 2.5È3.4], and a
steeper slope of a B 2.4 for higher Ñuxes [log (*F) \ 3.4È
4.1]. This deviation from a single power law seems not to be
an e†ect of the automated Ñare classiÐcation criterion
because similar double slopes are also found for all events
without discrimination of Ñares (a B 1.9È2.7 Fig. 12 [top]).
The discrimination of Ñare events merely Ñattens both
slopes by about *a \ [0.2, similar to the 195 data. AtA�
this point it would be to premature to interpret the Ñat-
tening of the power-law slope at low Ñux values ; it could be
due to a systematic undersampling e†ect or a side e†ect in
the breakdown of spatiotemporal structures with our
pattern recognition code, or it could be related to a real
physical reason related to small cool Ñares at temperatures

MK (e.g., increased absorption for small-scale ÑareT
e
[ 1.0

loops immerged in the chromosphere below the transition
region zone ; see Aschwanden 2000).

8. CONCLUSIONS

The purpose of this study is to analyze the time variabil-
ity of EUV emission from the quiet Sun, to correct for

instrumental e†ects that contribute to artiÐcial time varia-
bility, and to identify from the remaining variability
attributable to true solar phenomena those events that are
associated with microÑares. With this task we aim to estab-
lish a Ðrm basis for pursuing statistics and analysis of physi-
cal parameters of EUV microÑares in subsequent studies.
The Ðndings can be summarized as follows :

1. Using T RACE 171 and 195 images with relativelyA�
long exposures, we Ðnd that artiÐcial variability is caused
by ““ bad ÏÏ (underefficient) pixels, ““ hot ÏÏ (temporarily
enhanced) pixels, orbit-correlated spacecraft temperature
variations that a†ect the readout pedestal value or readout
noise, spacecraft pointing drift on the order of and[2A,
mostly by radiation spikes caused by cosmic-ray hits, even
after correction with a local Ðlter function, because there
remain small residuals in neighbor pixels due to the on-
board jpeg data compression algorithm. Pixel defects (bad
and hot pixels) introduce time variability because they
move in an image that does not track solar rotation. After
identiÐcation and correction of all known e†ects we Ðnd
that the dominant source of data noise consists of residuals
from cosmic-ray hits, while photon Poisson noise is much
less severe. The rate of cosmic-ray hits is much higher for
the T RACE spacecraft (which passes through radiation belt
zones) than for the SOHO/EIT instrument operating at the
same wavelengths (located in the Lagrangian point far away
from the EarthÏs radiation belt).

2. During an observing interval of 45 minutes with a
cadence of 2 minutes we Ðnd that B50% of the quiet-Sun
Ðeld of view shows signiÐcant º3 p variability at 171 andA�
B15% at 195 We measured the variability within 4 ] 4A� .
macropixels to improve the signal-to-noise ratio and to
eliminate spacecraft pointing drift [2A.

3. We developed a spatiotemporal pattern recognition
code which assembles time-variable macropixels with a size
of 2A and a time coincidence of ^2 minutes. This algorithm
organizes the spatiotemporal events into 3131 signiÐcant
events in 171 and 904 events in 195A� A� .

4. Inspecting the images and time proÐles of signiÐcant
events we identify 319 (35%) events with Ñarelike character-
istics (brightening and dimming loops) in the 195 data.A�
We quantify a numerical Ñare criterion based on high cross-
correlation coefficients (ccc[ 0.5) in time proÐles, spatial
maps, and dynamic changes of spatial maps between the
two (peak) temperatures (0.9 and 1.4 MK) of the 171 and
195 passband. We establish that this numerical Ñare cri-A�
terion matches the visual classiÐcation in 83% of the cases.
Applying this automated Ñare criterion we Ðnd a total of
281 microÑares in the 195 data and 798 microÑares in theA�
171 data.A�

5. The frequency distribution of Ñare peak Ñuxes can be
Ðtted with a power law with a slope of a \ [1.83^ 0.07 at
195 which is in good agreement with SXR and HXR ÑareA� ,
peak Ñuxes. The application of a Ñare discrimination cri-
terion is found to be very important to derive the correct
power-law slope of a Ñare frequency distribution. Neglect of
Ñare discrimination would lead to power-law slopes that are
steeper by *a \ ]0.3 in both the 171 and 195 wave-A�
lengths.

In the second paper of this series we will characterize the
physical parameters of the EUV microÑares detected and
discriminated with the method described here. Some of the
detected microÑares show a very simple spatial structure
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and highly correlated temporal evolution in nearby tem-
peratures and are therefore suitable for simple modeling of
heating and cooling processes. From this modeling we
anticipate deriving their energy input in a reliable way that
allows us to build up statistics on microÑare energetics that
ultimately may shed light on the issue whether microÑares
have the required spatial distribution and occurrence rate
to heat the solar corona.
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