next up previous
Next: Method Up: Dispersion effect Previous: Introduction

Mathematical Treatment

From Section 1, we know that at each peak, $\alpha = m\pi$, and


\begin{displaymath}
\alpha=\frac{ka}{2}\sin \theta
=\left(\frac{2\pi}{\lambda} \...
...\frac{a}{2}\sin \theta
=\frac{\pi a}{\lambda}\sin \theta
=m\pi
\end{displaymath}


\begin{displaymath}
\frac{a}{\lambda}\sin \theta=m
\end{displaymath}


\begin{displaymath}
\sin \theta = \frac{m\lambda}{a}
\end{displaymath}

But for very small angles, $\sin \theta \approx \theta$, and here, $\lambda/a$ is of the magnitude of $1 \times 10^{-4}$, so


\begin{displaymath}
\theta \approx \frac{m\lambda}{a}
\end{displaymath} (5)

This means that if we want to compare the angle of diffraction for 2 slightly different wavelengths,


\begin{displaymath}
\Delta \theta \approx m\frac{\Delta \lambda}{a}
\end{displaymath} (6)

The separation between the peaks of the two wavelengths will therefore increase linearly with order number, with a slope of $\Delta \lambda /a$.

The TRACE specifications say that the grating has 70 lines per inch, so $a = 3.63 \times 10^{-4}$ m.

Using equation (6), we can calculate that the slope of the line should be


\begin{displaymath}
\frac{\Delta \lambda}{a}
=\frac{1.7452 \times 10^{-8} - 1.7106 \times 10^{-8}} {3.63 \times 10^{-8}}
=9.535 \times 10^{-7}
\end{displaymath}

That is, the separation between the peaks of the two wavelengths will increase by $9.535 \times 10^{-7}$ radians (0.1967 arc sec) per order. The TRACE specifications say that each pixel is 0.4993 arc seconds across, so the separation between the peaks should increase by 0.1967/0.4993 = 0.394 pixels per order number.


next up previous
Next: Method Up: Dispersion effect Previous: Introduction
Andrew Lin
2000-06-30